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Background

• The international community has set ambitious goals for improvement
in global health.
• Where is improvement needed?

• Chapters 1 and 2: contributions related to statistical estimation and
projection of global health indicators, with a focus on family planning.

• Which interventions are effective in improving health outcomes?
• Chapter 3: methods for estimating the effect of interventions on family

planning outcomes.
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outcomes in multiple populations

2 Chapter 2: Flexible Modeling of Transition Processes with B-splines

3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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Background

• There is interest in modeling demographic and health indicators in
order to measure progress towards international goals.
• Example: Under-5 Mortality Rate

• Data availability and quality are varied.
• Some countries have high quality U5MR data from vital registration

systems, in other countries data may only come from surveys.

• Many statistical models have been created to provide estimates and
projections.

• Comparing across models can be difficult.

• This chapter: an overarching model class called Temporal Models
for Multiple Populations (TMMPs).
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Background

• Published in International Statistical Review :
• Susmann, Herbert, Monica Alexander, and Leontine Alkema.

”Temporal Models for Demographic and Global Health Outcomes in
Multiple Populations: Introducing a New Framework to Review and
Standardise Documentation of Model Assumptions and Facilitate
Model Comparison.” International Statistical Review (2022).
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Under-5 Mortality Rate (U5MR) Models
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A glance at the IHME GBD model...
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A glance at the UN IGME model...
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Modeling Framework

• Let ηc,t be the true value of the indicator in country c at time t
(c = 1, . . . ,C , t = 1, . . .T ).

• Observed data yi , i = 1, . . . , n with associated properties c[i ], t[i ], ...
• Process model describes evolution of ηc,t .

• Covariates
• Systematic trends

• Data model describes relationship between yi and ηc[i ],t[i ].
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Modeling Framework

ηc,t ηc,t+1 ηc,t+2 ηc,t+3

y1 y2

Process
Model

Data Model
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Data Model Examples

Examples of data models:

• Normal:

yi |ηc[i ],t[i ], σ
2
i ∼ N(ηc[i ],t[i ], σ

2
i )

where yi ∈ R and σ2
i is the sampling variance.

• Binomial:

yi |ηc[i ],t[i ] ∼ Binom(ni , ηc[i ],t[i ])

where yi , ni are integers.
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Process Model

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing
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Covariate component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Regression function for incorporating covariates.
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Systematic component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Parametric function for modeling systematic temporal trends.
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Offset

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The offset term incorporates external information, for example from a
separate modeling step.
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Smoothing Component

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The smoothing component allows data-driven deviations from the
other components, while still enforcing smoothness.

• Many choices B-splines, Gaussian processes, AR(p), RW(p),
spatio-temporal smoothing, ...
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Hierarchical Modeling

• Each component introduces many country specific parameters that
need to be estimated.

• Hierarchical modeling is a way to share information between countries.

• Example: hierarchical model with one level of hierarchy for a
country-specific parameter θc :

θc | θw , σθ ∼ N(θw , σ
2
θ)
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Comparing the example models...
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Contributions

• A model class, Temporal Models for Multiple Populations (TMMPs),
that encompasses many existing demographic and health models.
• Model class makes a clear distinction between the process model and

the data model.
• Process model is split into building blocks: covariates, systematic

trends, offsets, and smoothing components.

• Detailed description of six existing models using TMMP notation, and
templates provided for documenting additional models as TMMPs.
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Outline

1 Chapter 1: Temporal models for demographic and global health
outcomes in multiple populations

2 Chapter 2: Flexible Modeling of Transition Processes with B-splines

3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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Background

• Some indicators have been observed to evolve similarly across
populations.
• They tend to follow a transition between stable states.

• Classic example: demographic transition.
• Transition from high total fertility rate and high under-5 mortality to

low fertility, low mortality.

• Existing statistical models for estimating and projecting trends in
these indicators draw on these patterns.

• This chapter: We propose a new type of model, called B-spline
Transition Models, for flexibly estimating indicators that follow
transitions.
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Case Study

• Modern Contraceptive Prevalence Rate (mCPR) for married or
in-union women: proportion of married or in-union women of
reproductive age using (or with partner using) a modern contraceptive
method.

• Transition: low to high mCPR.

• Existing model: Family Planning Estimation Model (FPEM, Cahill et
al. 2018).

• Goal: estimate and project mCPR in countries from 1970-2030.

• Dataset aggregated by United Nations Population Division (UNPD)
from surveys conducted by governments or international organizations.
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Case Study
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Figure: Observations of mCPR in countries with relatively high data availability
(top row) vs. relatively low availability (bottom row).
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Transition Models

• Our contribution: a model class for indicators that follow a
transition.

• Transition Models have a process model given by

g1(ηc,t) = g3(t,ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ εc,t︸︷︷︸
smoothing

.

• The systematic component has the following form:

g3(t,ηc,s 6=t ,αc) =


Ωc , t = t∗c ,

g1(ηc,t−1) + f (ηc,t−1,Pc ,βc), t > t∗c ,

g1(ηc,t+1)− f (ηc,t+1,Pc ,βc), t < t∗c ,

where αc = {Ωc ,Pc ,βc}.
• The function f is called the transition function.
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FPEM Example

• The Family Planning Estimation Model (FPEM) is an example of a
Transition Model (Cahill et al., 2018).

• Because ηc,t ∈ (0, 1), FPEM process model uses a logit transform:

logit(ηc,t) = g3(t,ηc,s 6=t ,αc) + εc,t .

• The FPEM transition function was chosen such that mCPR follows a
logistic growth curve:

f (ηc,t−1,Pc ,βc) =

{
(ηc,t−1−Pc )ωc

Pc (ηc,t−1−1) , ηc,t−1 < Pc ,

0, otherwise.

where βc = {ωc}, and the parameters can be interpreted as
• ωc : rate parameter,
• Pc : asymptote parameter.
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FPEM Example
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B-spline Transition Model

• Our contribution: estimate the transition function f while making
weaker functional form assumptions.

• Approach: estimate f using B-splines.
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B-spline Example
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B-spline Transition Model

• Define a transition function fb as:

fb(ηc,t ,Pc ,βc) =
J∑

j=1

hj(βc,j)︸ ︷︷ ︸
coefficient

· Bj(ηc,t/Pc)︸ ︷︷ ︸
basis function

,

where Pc is an asymptote parameter.

• Flexibility of fb can be tuned through the spline degree and number
and positioning of knots.
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Example B-spline Transition Function
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Sharing information on shape of transition function

• Varying data availability across countries.

• We would like to share information about the transition between
countries.

• Spline coefficients βc,j are nested within sub-regions, regions, and
world.

• Hierarchical model on the spline coefficients βc,j for j = 1, . . . , J:

βc,j | β
(s)
s[c],j , σ

(c)
β,j ∼ N

(
β

(s)
s[c],j ,

(
σ

(c)
β,j

)2
)
,

β
(s)
s,j | β

(r)
r [s],j , σ

(s)
β,j ∼ N

(
β

(r)
r [s],j ,

(
σ

(s)
β,j

)2
)
,

β
(r)
r ,j | β

(w)
j , σ

(r)
β,j ∼ N

(
β

(w)
j ,

(
σ

(r)
β,j

)2
)
.
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Sharing information on shape of transition function
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Smoothing component

• Recall the process model has two components:

g1(ηc,t) = g3(t,ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ εc,t︸︷︷︸
smoothing

.

• Smoothing component: AR(1) process of the form

εc,t |εc,t−1, τ, ρ ∼ N(ρ ∗ εc,t−1, τ
2)
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Smoothing component

Chapter 2 (13/20) 36 / 86



Data Model: connection to observed data

• Let yi , i = 1, . . . , n be the observed mCPR for country c[i ] and year
y [i ] from data source d [i ].

• For each observation we have an estimate s2
i of the sampling error.

• We also expect each data source to have additional non-sampling
error σ2

d [i ].

• Truncated normal data model:

yi |ηc[i ],t[i ], σ
2
d [i ] ∼ N(0,1)

(
ηc[i ],t[i ], s

2
i + σ2

d [i ]

)
.
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Computation

• Model fit with full Bayesian inference.

• Implementation in Stan, including a fast B-spline algorithm in C++.

• Multiple specifications tested with different B-spline degrees and
number of knots.
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Choosing a spline specification

Validation exercise: hold out all observations after a cutoff year L = 2010.
95% UI Error

% Below % Included % Above CI Width ×100 ME ×100 MAE ×100

Model Check 2 (L = 2010), n = 133

B-spline (d = 2, K = 5) 3.76% 94.7% 1.5% 32.0 -1.670 4.64

B-spline (d = 2, K = 7) 6.02% 91.7% 2.26% 31.5 -1.260 4.68

B-spline (d = 3, K = 5) 3.76% 94.7% 1.5% 32.4 -1.630 4.48

B-spline (d = 3, K = 7) 3.76% 94% 2.26% 31.6 -0.965 4.57

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Illustrative Fits from B-spline Model

Guinea South Africa Swaziland

Bangladesh Indonesia Kenya

1980 2000 2020 1980 2000 2020 1980 2000 2020

1980 2000 2020 1980 2000 2020 1980 2000 2020

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Year

ηct

Data Source

DHS
MICS
National survey
Other
PMA

Figure: Posterior median (black line) and 50%, 80%, and 95% credible intervals
(shaded regions) of ηc,t (latent mCPR).
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Trends can be seen in regional and subregional transition
functions
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Comparison to a logistic type model

Validation exercise: hold out all observations after a cutoff year L = 2010.
95% UI Error

% Below % Included % Above CI Width ×100 ME ×100 MAE ×100

Model Check 2 (L = 2010), n = 133

B-spline (d = 2, K = 5) 3.76% 94.7% 1.5% 32.0 -1.670 4.64

Logistic 6.77% 92.5% 0.752% 32.7 -2.850 4.82

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Detailed Example: Rwanda
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Detailed Example: Rwanda
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Detailed Example: Rwanda

Smoothing component
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Detailed Example: Rwanda

Modern Contraceptive Prevalence Rate
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Contributions

• Subclass of Transition Models for indicators that follow transitions.

• B-spline Transition Model: flexible modelling approach based on
B-splines.

• Generated estimations and projections of mCPR in countries from
1970-2030.

• Found systematically different transitions in countries across regions.

• Flexible model framework that can be easily extended to new settings
and use cases.
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Background

• Which interventions are effective in improving health outcomes?

• Marginal Structural Models provide one a way to summarize how the
effect of an intervention on an outcome changes within subgroups.

• This Chapter: We introduce a novel targeted Bayesian estimator for
the parameter of a Marginal Structural Model in a general setting.
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Motivating Example

• Randomized field experiment conducted in Lilongwe, Malawi, to
investigate effect of family planning intervention on contraceptive use
(Karra et al., 2020, 2022).

• Intervention: broad-based intervention including information package
and counseling.

• Outcome: contraceptive use two years after intervention.

Chapter 3 (2/29) 50 / 86



Scientific question

• Scientific question: does the treatment effect differ depending on
number of children at baseline?

• Potential example of Treatment Effect Modification.

• Marginal distribution of number of children:
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Observed data

• For each participant, we have:
• X : set of 11 covariates measured at baseline, including number of

children Xc ;
• A: indicator of randomization into intervention group;
• Y : indicator of contraceptive use at endline.

• Let O1, . . . ,On be n i.i.d. draws of the generic variable
O = (X ,A,Y ) from the law P0 of the experiment.
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Conditional Average Treatment Effect

• Conditional Average Treatment Effect (CATE):

ΨCATE
P (x) = EP [Y | A = 1,X = x ]− EP [Y | A = 0,X = x ],

= Q̄
(1)
P (x)− Q̄

(0)
P (x)

• Causally identifiable under “standard causal assumptions”
(consistency, positivity, no unmeasured confounders).
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An example of a Marginal Structural Model

• Approach: summarize the relationship between potential treatment
effect modifiers (Xc) and conditional treatment effects (ΨCATE

P (X ))
using a user-supplied working model.

• For instance, let B(P) ∈ R2 be the solution to the following
optimisation problem:

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]
.
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X ) − (1,Xc)β
)2
]

conditional average treatment effect
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

linear working model
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

squared-error risk
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

defined in terms of P
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What a plot of the results will look like
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General Setting for MSMs

• Observed data: O1, . . . ,On i.i.d. copies of a generic variable O ∼ P0.
• Assume that P0 is in a non-parametric statistical model M.

• The more we know about the law P0, the smaller the model M.

• Assume that O = (Z ,X ) for variables Z ∈ Z, X ∈ X .

• For all P ∈M, let ΨP : X → R be a functional summary of P with
argument X .
• For the motivating example:

• O = (Y ,A,X ), Z = (Y ,A), X = X .
• ΨP(X ) = EP [Y | A = 1,X ]− EP [Y | A = 0,X ], the CATE

= Q̄
(1)
P (X )− Q̄

(0)
P (X ).
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Marginal Structural Models

• Idea: approximate ΨP using a user-supplied working model.

• Working model: set {mβ : β ∈ B} of functions mβ : X → R with B a
parameter of dimension p.

• Loss function: Lm(ΨP(X ),β)(X ).

• Define the parameter of interest B as the solution to the optimization
problem:

B(P) = arg min
β∈B

EP [Lm(ΨP(X ),β)(X )] .

• The combination of working model and loss function is called a
Marginal Structural Model (Robins et al., 2000; van der Laan and Rose, 2011).

• Causally identifiable under same assumptions as ΨP .

• Our contribution: a general framework for MSMs.
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Marginal Structural Models

M B

P

B(P)

B

Danger! Infinite dimensional space visualized in two dimensions!
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Semi-parametric inference

• Goal: estimate β0 := B(P0).

• What is the semi-parametric efficiency bound for estimating β0?

• We can write any regular estimator of β0 as:

β̂n = β0 +
1

n

n∑
i=1

ICP0(Oi ) + op(n−1/2),

where ICP0 is called an influence function of the parameter B at P0.

• The influence function with the smallest variance is called the efficient
influence function (EIF), which we denote D∗(P0).

• The semi-parametric efficiency bound for estimating β0 is given by
varP0(D∗(P0)(O))
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Efficient Influence Function of B(P)

Our contribution: we derived the EIF for the MSM parameter P 7→ B(P)
in a general setting.

Theorem (Efficient Influence Function)

(Simplified) The target functional P 7→ B(P) is pathwise differentiable at every
P ∈M, with an efficient influence function D∗(P) given by

D∗(P)(O) = M−1 [D∗1 (P)(O) + D∗2 (P)(X )] ,

where D∗1 (P),D∗2 (P) ∈ L2
0(P) are given by

D∗1 (P)(O) = ∇L̇(ΨP(X ),B(P))(X )×∆∗(P)(O),

D∗2 (P)(X ) = L̇(ΨP(X ),B(P))(X ),

and the normalizing matrix M is given by

M = −EP

[
L̈m(ΨP(X ),B(P))(X )

]
.
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Efficient Influence Function of B(P)

For our motivating example:

Theorem

(Simplified) The target functional P 7→ B(P) is pathwise differentiable at
every P ∈M, with an efficient influence function D∗(P) given by

D∗(P)(X ,A,Y ) = M−1 {D∗1 (P)(X ,A,Y ) + D∗2 (P)(X )} ,

where

D∗1 (P)(X ,A,Y ) =

{
I(A = 1)

P[A = 1|X ])
− I(A = 0)

P[A = 0|X ]

}
(Y − Q̄

(A)
P (X ))(1,X )>,

D∗2 (P)(X ) = (ΨP(X )− B(P)>(1,X )>)(1,X )>,

and the normalizing matrix M is given by

M = −EP

[
(1,X )>(1,X )

]
.
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Targeted Minimum Loss-Based Estimation

• It turns out we can construct an estimator that achieves this
efficiency bound!
• Targeted Minimum Loss-Based Estimation (TMLE) (van der Laan and

Rose, 2011, 2018)

• Suppose we have an initial estimator P◦n of the pieces of P0 relevant
to the MSM parameter B(P0).

• We can then form a plug-in estimator

β̂plug−in = B(P◦n).

• The plug-in estimator is biased!
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Plug-in estimation is biased

M B

P0

B(P0)

P◦n

B(P◦n)
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Targeted Minimum Loss-Based Estimation

• Targeted Minimum Loss-Based Estimation (TMLE): plug-in estimator
of the form

β̂TMLE = B(P◦n(ε∗n))

where {P◦n(ε) : ε ∈ Rp} ⊂ M is a fluctuation of an initial estimator
P◦n of the pieces of P0 relevant to β, and ε∗n is chosen by minimising
the empirical risk induced by a well-chosen loss function L.
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TMLE: update initial estimate in direction of truth

M B

P0

B(P0)

P◦n,ε
P◦n B(P◦n,ε)

B(P◦n)

Chapter 3 (18/29) 66 / 86



Bayesian TMLE

• Can we make this procedure Bayesian?

• Core idea: some choices of TMLE loss function L can be interpreted
as defining a likelihood for the data O conditional on the parameter ε
under the fluctuation submodel.

• We can then use Bayesian inference to estimate ε! (Diaz et al., 2011; D́ıaz

et al., 2020)
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Bayesian TMLE

• Basic application of Bayes rule: posterior distribution of ε is given by

Πε(ε | O1, . . . ,On) ∝ πε(ε)
n∏

i=1

p◦n(Oi | ε)

where πε is a prior distribution for ε and p◦n(O | ε) is the likelihood of
O under P◦n(ε).

• Once we have a posterior distribution for ε we can map it to a
posterior distribution for β.
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Bayesian TMLE

M B
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B(P0)

P◦n,ε
P◦n B(P◦n,ε)

B(P◦n)
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Bernstein von-Mises

• Desired result: the posterior distribution for β converges to a normal
distribution centered on the frequentist TMLE with variance given by
the variance of the efficient influence function.

• Our contribution: We prove an oracular version that provides
conditions under which the posterior distribution based on fluctuation
of P0 will converge to the optimal distribution.
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Bayesian TMLE

M B

P0

B(P0)
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Bernstein von-Mises

• Let p0
n(O | ε) be the likelihood of the submodel fluctuating P0.

• Key conditions:
• The gradient satisfies

∂

∂ε
log p0

n(O|ε)

∣∣∣∣
ε=0

= D∗(P0)(O).

• The Hessian satisfies

P0

[
∂2

∂ε2
log p0

n(O|ε)

∣∣∣∣
ε=0

]
= P0[D∗(P0)D∗(P0)>].
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Bernstein von-Mises

Theorem (Oracular Bernstein von-Mises)

(Simplified) Let N (µ,Σ) denote the multivariate normal distribution with mean
vector µ and covariance matrix Σ. Then, under certain assumptions,

‖Π0
β (· | O1, . . . ,On)− N

(
∆0

n,P0[D∗(P0)D∗(P0)>]
)
‖1 = oP(1)

where

∆0
n =

1√
n

n∑
i=1

P0[λ∗(P0)]−1D∗(P0)(Oi ). (1)
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Universal Algorithm

• In practice, users may want to try several working models
{mβ : β ∈ B} and loss functions Lm.

• We could anticipate this and choose several working models and loss
functions and hand-code the required derivatives. But what if a user
wants to use something we haven’t implemented?

• An alternative is to use automatic differentiation to compute the
required derivatives automatically.

• Our contribution: We implemented a universal algorithm in Julia
that uses auto-differentiation to automatically adapt the fluctuation
model and efficient influence function to arbitrary well-chosen working
models and loss functions.
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Motivating Example: Results
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frequentist MLE with variance given by the estimated variance of the

efficient influence function.
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Motivating Example: Results
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Contributions

• Definition of MSMs in a general setting.

• Derivation of efficient influence function for general MSM parameters.

• Novel Bayesian TMLE for MSMs.

• Universal algorithm implemented in Julia using autodifferentiation.

• Application to estimate relationship between effect of intervention on
contraceptive use with number of children as an effect modifier in a
randomized field experiment.
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Future Work

• Strengthening Bernstein von-Mises result

• Developing methods for choosing between multiple working models.
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Summary

Where is improvement needed?

• Chapter 1: Temporal Models for Multiple Populations

• Chapter 2: B-spline Transition Model

Which interventions are effective in improving health outcomes?

• Chapter 3: Bayesian targeted learning for Marginal Structural Models
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Difference between B-splines and logistic model
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Estimation

• Let’s analyze the properties of the plug-in estimator.

• We can write

√
n (β◦n − β0) =

√
n(Pn − P0)D∗(P0)︸ ︷︷ ︸
 N(0,P0D∗(P0)2)

−
√
nPnD

∗(P◦n)︸ ︷︷ ︸
bias term

+
√
n(Pn − P0)(D∗(P◦n)− D∗(P0)) + op(1)︸ ︷︷ ︸

negligible

.

• We want to construct an estimator with a bias term of zero.
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A glimpse at how TMLE works

• The fluctuation and loss function are chosen to satisfy (among other
things) a key property:

D∗(P◦n) ∈ Span

(
∂

∂ε
L (P◦n(ε))

∣∣∣∣
ε=0

)
.

• Importantly, the TMLE solves the EIF of the target parameter:

EPn [D∗(P◦n(ε∗n))(O)] = 0.

• Under certain conditions, β̂TMLE is asymptotically normal and
efficient.
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Blueprint for fluctuation model

How do we choose the form of the fluctuation model P◦n(ε)? Our
contribution: a blueprint for the fluctuation model.
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Back to the motivating example

• First, we need to find the parts of P relevant to B and D∗.

• Recall the definition of B(P) and ΨCATE
P :

B(P) = arg min
β∈B

EP

[
ΨCATE

P (X )− (1,X )β
]

ΨCATE
P (x) = Q̄

(1)
P (x)− Q̄

(0)
P (x)

= EP [Y | A = 1,X = x ]− EP [Y | A = 0,X = x ]

• In addition, D∗(P) depends on gP(a, x) = P(A = a|X = x).

• The relevant parts of P are therefore QP (the marginal distribution of

X ), Q̄
(1)
P , Q̄

(0)
P , and gP .
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Back to the motivating example

• Suppose we have initial estimators of each part of P0 relevant to B
and D∗.
• To estimate QP0 , the marginal distribution of X under P0, we use the

empirical distribution of X , which we call Q◦n .
• To estimate Q̄

(0)
P0

, Q̄
(1)
P0

, and gP0 , we use estimators Q̄
◦,(0)
n , Q̄

◦,(1)
n , and

g◦n .

• Let P◦n ∈M be any law such that its relevant features coincide with

{Q◦n , Q̄
◦,(0)
n , Q̄

◦,(1)
n , g◦n}.
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Back to the motivating example

• Now we need to build a fluctuation submodel of each of the parts of
P relevant to B.

• Fluctuation indexed by ε ∈ Rp:

Q̄
◦,(1)
n,ε (x) = Q̄

◦,(1)
n (x) +

1

g◦P(1, x)
ε>(1,X )>

Q̄
◦,(0)
n,ε (x) = Q̄

◦,(0)
n (x)− 1

g◦P(0, x)
ε>(1,X )>

Q◦n,ε(x) ∝ exp(ε>D∗2,CATE(P◦n)(x))Q◦n(x)

• Negative log-likelihood loss function:

L(Q̄
◦,(0)
n,ε , Q̄

◦,(1)
n,ε ,Q◦n,ε,O) =

(
Y − Q̄

◦,(A)
n,ε

)2
− logQ◦n,ε(X ).
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