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Background

• The international community has set ambitious goals for improvement
in global health.
• Where is improvement needed?

• Chapters 1 and 2: contributions related to statistical estimation and
projection of global health indicators, with a focus on family planning.

• Which interventions are effective in improving health outcomes?
• Chapter 3: methods for estimating the effect of interventions on family

planning outcomes.
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1 Chapter 1: Temporal models for demographic and global health
outcomes in multiple populations

2 Chapter 2: Flexible Modeling of Transition Processes with B-splines

3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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Background

• There is interest in modeling demographic and health indicators in
order to measure progress towards international goals.
• Example: Under-5 Mortality Rate

• Data availability and quality are varied.
• Some countries have high quality U5MR data from vital registration

systems, in other countries data may only come from surveys.

• Many statistical models have been created to provide estimates and
projections.

• Comparing across models can be difficult.

• This chapter: an overarching model class called Temporal Models
for Multiple Populations (TMMPs).
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Background

• Published in International Statistical Review :
• Susmann, Herbert, Monica Alexander, and Leontine Alkema.

”Temporal Models for Demographic and Global Health Outcomes in
Multiple Populations: Introducing a New Framework to Review and
Standardise Documentation of Model Assumptions and Facilitate
Model Comparison.” International Statistical Review (2022).
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Under-5 Mortality Rate (U5MR) Models
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A glance at the IHME GBD model...
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A glance at the UN IGME model...
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Modeling Framework

• Let ηc,t be the true value of the indicator in country c at time t
(c = 1, . . . ,C , t = 1, . . .T ).

• Observed data yi , i = 1, . . . , n with associated properties c[i ], t[i ], ...
• Process model describes evolution of ηc,t .

• Covariates
• Systematic trends

• Data model describes relationship between yi and ηc[i ],t[i ].
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Modeling Framework

ηc,t ηc,t+1 ηc,t+2 ηc,t+3

y1 y2

Process
Model

Data Model
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Data Model Examples

Examples of data models:

• Normal:

yi |ηc[i ],t[i ], σ
2
i ∼ N(ηc[i ],t[i ], σ

2
i )

where yi ∈ R and σ2
i is the sampling variance.

• Binomial:

yi |ηc[i ],t[i ] ∼ Binom(ni , ηc[i ],t[i ])

where yi , ni are integers.
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Process Model

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing
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Covariate component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Regression function for incorporating covariates.
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Systematic component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Parametric function for modeling systematic temporal trends.
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Offset

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The offset term incorporates external information, for example from a
separate modeling step.
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Smoothing Component

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The smoothing component allows data-driven deviations from the
other components, while still enforcing smoothness.

• Many choices B-splines, Gaussian processes, AR(p), RW(p),
spatio-temporal smoothing, ...
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Hierarchical Modeling

• Each component introduces many country specific parameters that
need to be estimated.

• Hierarchical modeling is a way to share information between countries.

• Example: hierarchical model with one level of hierarchy for a
country-specific parameter θc :

θc | θw , σθ ∼ N(θw , σ
2
θ)
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Comparing the example models...
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Contributions

• A model class, Temporal Models for Multiple Populations (TMMPs),
that encompasses many existing demographic and health models.
• Model class makes a clear distinction between the process model and

the data model.
• Process model is split into building blocks: covariates, systematic

trends, offsets, and smoothing components.

• Detailed description of six existing models using TMMP notation, and
templates provided for documenting additional models as TMMPs.
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Outline

1 Chapter 1: Temporal models for demographic and global health
outcomes in multiple populations

2 Chapter 2: Flexible Modeling of Transition Processes with B-splines

3 Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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Background

• Some indicators have been observed to evolve similarly across
populations.
• They tend to follow a transition between stable states.

• Classic example: demographic transition.
• Transition from high total fertility rate and high under-5 mortality to

low fertility, low mortality.

• Existing statistical models for estimating and projecting trends in
these indicators draw on these patterns.

• This chapter: We propose a new type of model, called B-spline
Transition Models, for flexibly estimating indicators that follow
transitions.
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Case Study

• Modern Contraceptive Prevalence Rate (mCPR) for married or
in-union women: proportion of married or in-union women of
reproductive age using (or with partner using) a modern contraceptive
method.

• Transition: low to high mCPR.

• Existing model: Family Planning Estimation Model (FPEM, Cahill et
al. 2018).

• Goal: estimate and project mCPR in countries from 1970-2030.

• Dataset aggregated by United Nations Population Division (UNPD)
from surveys conducted by governments or international organizations.
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Case Study
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Figure: Observations of mCPR in countries with relatively high data availability
(top row) vs. relatively low availability (bottom row).
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Transition Models

• Our contribution: a model class for indicators that follow a
transition.

• Transition Models have a process model given by

g1(ηc,t) = g3(t,ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ εc,t︸︷︷︸
smoothing

.

• The systematic component has the following form:

g3(t,ηc,s 6=t ,αc) =


Ωc , t = t∗c ,

g1(ηc,t−1) + f (ηc,t−1,Pc ,βc), t > t∗c ,

g1(ηc,t+1)− f (ηc,t+1,Pc ,βc), t < t∗c ,

where αc = {Ωc ,Pc ,βc}.
• The function f is called the transition function.
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FPEM Example

• The Family Planning Estimation Model (FPEM) is an example of a
Transition Model (Cahill et al., 2018).

• Because ηc,t ∈ (0, 1), FPEM process model uses a logit transform:

logit(ηc,t) = g3(t,ηc,s 6=t ,αc) + εc,t .

• The FPEM transition function was chosen such that mCPR follows a
logistic growth curve:

f (ηc,t−1,Pc ,βc) =

{
(ηc,t−1−Pc )ωc

Pc (ηc,t−1−1) , ηc,t−1 < Pc ,

0, otherwise.

where βc = {ωc}, and the parameters can be interpreted as
• ωc : rate parameter,
• Pc : asymptote parameter.
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FPEM Example
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B-spline Transition Model

• Our contribution: estimate the transition function f while making
weaker functional form assumptions.

• Approach: estimate f using B-splines.
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B-spline Example
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B-spline Transition Model

• Define a transition function fb as:

fb(ηc,t ,Pc ,βc) =
J∑

j=1

hj(βc,j)︸ ︷︷ ︸
coefficient

· Bj(ηc,t/Pc)︸ ︷︷ ︸
basis function

,

where Pc is an asymptote parameter.

• Flexibility of fb can be tuned through the spline degree and number
and positioning of knots.
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Example B-spline Transition Function
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Sharing information on shape of transition function

• Varying data availability across countries.

• We would like to share information about the transition between
countries.

• Spline coefficients βc,j are nested within sub-regions, regions, and
world.

• Hierarchical model on the spline coefficients βc,j for j = 1, . . . , J:

βc,j | β
(s)
s[c],j , σ

(c)
β,j ∼ N

(
β

(s)
s[c],j ,

(
σ

(c)
β,j

)2
)
,

β
(s)
s,j | β

(r)
r [s],j , σ

(s)
β,j ∼ N

(
β

(r)
r [s],j ,

(
σ

(s)
β,j

)2
)
,

β
(r)
r ,j | β

(w)
j , σ

(r)
β,j ∼ N

(
β

(w)
j ,

(
σ

(r)
β,j

)2
)
.
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Sharing information on shape of transition function
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Smoothing component

• Recall the process model has two components:

g1(ηc,t) = g3(t,ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ εc,t︸︷︷︸
smoothing

.

• Smoothing component: AR(1) process of the form

εc,t |εc,t−1, τ, ρ ∼ N(ρ ∗ εc,t−1, τ
2)
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Smoothing component
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Data Model: connection to observed data

• Let yi , i = 1, . . . , n be the observed mCPR for country c[i ] and year
y [i ] from data source d [i ].

• For each observation we have an estimate s2
i of the sampling error.

• We also expect each data source to have additional non-sampling
error σ2

d [i ].

• Truncated normal data model:

yi |ηc[i ],t[i ], σ
2
d [i ] ∼ N(0,1)

(
ηc[i ],t[i ], s

2
i + σ2

d [i ]

)
.
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Computation

• Model fit with full Bayesian inference.

• Implementation in Stan, including a fast B-spline algorithm in C++.

• Multiple specifications tested with different B-spline degrees and
number of knots.
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Choosing a spline specification

Validation exercise: hold out all observations after a cutoff year L = 2010.
95% UI Error

% Below % Included % Above CI Width ×100 ME ×100 MAE ×100

Model Check 2 (L = 2010), n = 133

B-spline (d = 2, K = 5) 3.76% 94.7% 1.5% 32.0 -1.670 4.64

B-spline (d = 2, K = 7) 6.02% 91.7% 2.26% 31.5 -1.260 4.68

B-spline (d = 3, K = 5) 3.76% 94.7% 1.5% 32.4 -1.630 4.48

B-spline (d = 3, K = 7) 3.76% 94% 2.26% 31.6 -0.965 4.57

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Illustrative Fits from B-spline Model
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Figure: Posterior median (black line) and 50%, 80%, and 95% credible intervals
(shaded regions) of ηc,t (latent mCPR).
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Trends can be seen in regional and subregional transition
functions
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Comparison to a logistic type model

Validation exercise: hold out all observations after a cutoff year L = 2010.
95% UI Error

% Below % Included % Above CI Width ×100 ME ×100 MAE ×100

Model Check 2 (L = 2010), n = 133

B-spline (d = 2, K = 5) 3.76% 94.7% 1.5% 32.0 -1.670 4.64

Logistic 6.77% 92.5% 0.752% 32.7 -2.850 4.82

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Detailed Example: Rwanda
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Detailed Example: Rwanda
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Detailed Example: Rwanda

Smoothing component
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Detailed Example: Rwanda

Modern Contraceptive Prevalence Rate
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Contributions

• Subclass of Transition Models for indicators that follow transitions.

• B-spline Transition Model: flexible modelling approach based on
B-splines.

• Generated estimations and projections of mCPR in countries from
1970-2030.

• Found systematically different transitions in countries across regions.

• Flexible model framework that can be easily extended to new settings
and use cases.
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Background

• Which interventions are effective in improving health outcomes?

• Marginal Structural Models provide one a way to summarize how the
effect of an intervention on an outcome changes within subgroups.

• This Chapter: We introduce a novel targeted Bayesian estimator for
the parameter of a Marginal Structural Model in a general setting.
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Motivating Example

• Randomized field experiment conducted in Lilongwe, Malawi, to
investigate effect of family planning intervention on contraceptive use
(Karra et al., 2020, 2022).

• Intervention: broad-based intervention including information package
and counseling.

• Outcome: contraceptive use two years after intervention.
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Scientific question

• Scientific question: does the treatment effect differ depending on
number of children at baseline?

• Potential example of Treatment Effect Modification.

• Marginal distribution of number of children:

4

541
507

321

193

76

18 5 1 1
0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Number of children at baseline

n

Chapter 3 (3/29) 51 / 86



Observed data

• For each participant, we have:
• X : set of 11 covariates measured at baseline, including number of

children Xc ;
• A: indicator of randomization into intervention group;
• Y : indicator of contraceptive use at endline.

• Let O1, . . . ,On be n i.i.d. draws of the generic variable
O = (X ,A,Y ) from the law P0 of the experiment.
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Conditional Average Treatment Effect

• Conditional Average Treatment Effect (CATE):

ΨCATE
P (x) = EP [Y | A = 1,X = x ]− EP [Y | A = 0,X = x ],

= Q̄
(1)
P (x)− Q̄

(0)
P (x)

• Causally identifiable under “standard causal assumptions”
(consistency, positivity, no unmeasured confounders).

Chapter 3 (5/29) 53 / 86



An example of a Marginal Structural Model

• Approach: summarize the relationship between potential treatment
effect modifiers (Xc) and conditional treatment effects (ΨCATE

P (X ))
using a user-supplied working model.

• For instance, let B(P) ∈ R2 be the solution to the following
optimisation problem:

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]
.
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X ) − (1,Xc)β
)2
]

conditional average treatment effect
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

linear working model
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

squared-error risk
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An example of a Marginal Structural Model

B(P) = arg min
β∈R2

EP

[(
ΨCATE

P (X )− (1,Xc)β
)2
]

defined in terms of P
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What a plot of the results will look like
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General Setting for MSMs

• Observed data: O1, . . . ,On i.i.d. copies of a generic variable O ∼ P0.
• Assume that P0 is in a non-parametric statistical model M.

• The more we know about the law P0, the smaller the model M.

• Assume that O = (Z ,X ) for variables Z ∈ Z, X ∈ X .

• For all P ∈M, let ΨP : X → R be a functional summary of P with
argument X .
• For the motivating example:

• O = (Y ,A,X ), Z = (Y ,A), X = X .
• ΨP(X ) = EP [Y | A = 1,X ]− EP [Y | A = 0,X ], the CATE

= Q̄
(1)
P (X )− Q̄

(0)
P (X ).
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Marginal Structural Models

• Idea: approximate ΨP using a user-supplied working model.

• Working model: set {mβ : β ∈ B} of functions mβ : X → R with B a
parameter of dimension p.

• Loss function: Lm(ΨP(X ),β)(X ).

• Define the parameter of interest B as the solution to the optimization
problem:

B(P) = arg min
β∈B

EP [Lm(ΨP(X ),β)(X )] .

• The combination of working model and loss function is called a
Marginal Structural Model (Robins et al., 2000; van der Laan and Rose, 2011).

• Causally identifiable under same assumptions as ΨP .

• Our contribution: a general framework for MSMs.
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Marginal Structural Models

M B

P

B(P)

B

Danger! Infinite dimensional space visualized in two dimensions!
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Semi-parametric inference

• Goal: estimate β0 := B(P0).

• What is the semi-parametric efficiency bound for estimating β0?

• We can write any regular estimator of β0 as:

β̂n = β0 +
1

n

n∑
i=1

ICP0(Oi ) + op(n−1/2),

where ICP0 is called an influence function of the parameter B at P0.

• The influence function with the smallest variance is called the efficient
influence function (EIF), which we denote D∗(P0).

• The semi-parametric efficiency bound for estimating β0 is given by
varP0(D∗(P0)(O))
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Efficient Influence Function of B(P)

Our contribution: we derived the EIF for the MSM parameter P 7→ B(P)
in a general setting.

Theorem (Efficient Influence Function)

(Simplified) The target functional P 7→ B(P) is pathwise differentiable at every
P ∈M, with an efficient influence function D∗(P) given by

D∗(P)(O) = M−1 [D∗1 (P)(O) + D∗2 (P)(X )] ,

where D∗1 (P),D∗2 (P) ∈ L2
0(P) are given by

D∗1 (P)(O) = ∇L̇(ΨP(X ),B(P))(X )×∆∗(P)(O),

D∗2 (P)(X ) = L̇(ΨP(X ),B(P))(X ),

and the normalizing matrix M is given by

M = −EP

[
L̈m(ΨP(X ),B(P))(X )

]
.
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Efficient Influence Function of B(P)

For our motivating example:

Theorem

(Simplified) The target functional P 7→ B(P) is pathwise differentiable at
every P ∈M, with an efficient influence function D∗(P) given by

D∗(P)(X ,A,Y ) = M−1 {D∗1 (P)(X ,A,Y ) + D∗2 (P)(X )} ,

where

D∗1 (P)(X ,A,Y ) =

{
I(A = 1)

P[A = 1|X ])
− I(A = 0)

P[A = 0|X ]

}
(Y − Q̄

(A)
P (X ))(1,X )>,

D∗2 (P)(X ) = (ΨP(X )− B(P)>(1,X )>)(1,X )>,

and the normalizing matrix M is given by

M = −EP

[
(1,X )>(1,X )

]
.
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Targeted Minimum Loss-Based Estimation

• It turns out we can construct an estimator that achieves this
efficiency bound!
• Targeted Minimum Loss-Based Estimation (TMLE) (van der Laan and

Rose, 2011, 2018)

• Suppose we have an initial estimator P◦n of the pieces of P0 relevant
to the MSM parameter B(P0).

• We can then form a plug-in estimator

β̂plug−in = B(P◦n).

• The plug-in estimator is biased!
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Plug-in estimation is biased

M B

P0

B(P0)

P◦n

B(P◦n)
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Targeted Minimum Loss-Based Estimation

• Targeted Minimum Loss-Based Estimation (TMLE): plug-in estimator
of the form

β̂TMLE = B(P◦n(ε∗n))

where {P◦n(ε) : ε ∈ Rp} ⊂ M is a fluctuation of an initial estimator
P◦n of the pieces of P0 relevant to β, and ε∗n is chosen by minimising
the empirical risk induced by a well-chosen loss function L.
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TMLE: update initial estimate in direction of truth

M B

P0

B(P0)

P◦n,ε
P◦n B(P◦n,ε)

B(P◦n)
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Bayesian TMLE

• Can we make this procedure Bayesian?

• Core idea: some choices of TMLE loss function L can be interpreted
as defining a likelihood for the data O conditional on the parameter ε
under the fluctuation submodel.

• We can then use Bayesian inference to estimate ε! (Diaz et al., 2011; D́ıaz

et al., 2020)
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Bayesian TMLE

• Basic application of Bayes rule: posterior distribution of ε is given by

Πε(ε | O1, . . . ,On) ∝ πε(ε)
n∏

i=1

p◦n(Oi | ε)

where πε is a prior distribution for ε and p◦n(O | ε) is the likelihood of
O under P◦n(ε).

• Once we have a posterior distribution for ε we can map it to a
posterior distribution for β.
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Bayesian TMLE
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Bernstein von-Mises

• Desired result: the posterior distribution for β converges to a normal
distribution centered on the frequentist TMLE with variance given by
the variance of the efficient influence function.

• Our contribution: We prove an oracular version that provides
conditions under which the posterior distribution based on fluctuation
of P0 will converge to the optimal distribution.
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Bayesian TMLE

M B

P0

B(P0)
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Bernstein von-Mises

• Let p0
n(O | ε) be the likelihood of the submodel fluctuating P0.

• Key conditions:
• The gradient satisfies

∂

∂ε
log p0

n(O|ε)

∣∣∣∣
ε=0

= D∗(P0)(O).

• The Hessian satisfies

P0

[
∂2

∂ε2
log p0

n(O|ε)

∣∣∣∣
ε=0

]
= P0[D∗(P0)D∗(P0)>].
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Bernstein von-Mises

Theorem (Oracular Bernstein von-Mises)

(Simplified) Let N (µ,Σ) denote the multivariate normal distribution with mean
vector µ and covariance matrix Σ. Then, under certain assumptions,

‖Π0
β (· | O1, . . . ,On)− N

(
∆0

n,P0[D∗(P0)D∗(P0)>]
)
‖1 = oP(1)

where

∆0
n =

1√
n

n∑
i=1

P0[λ∗(P0)]−1D∗(P0)(Oi ). (1)
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Universal Algorithm

• In practice, users may want to try several working models
{mβ : β ∈ B} and loss functions Lm.

• We could anticipate this and choose several working models and loss
functions and hand-code the required derivatives. But what if a user
wants to use something we haven’t implemented?

• An alternative is to use automatic differentiation to compute the
required derivatives automatically.

• Our contribution: We implemented a universal algorithm in Julia
that uses auto-differentiation to automatically adapt the fluctuation
model and efficient influence function to arbitrary well-chosen working
models and loss functions.
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Motivating Example: Results
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efficient influence function.
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Motivating Example: Results
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Contributions

• Definition of MSMs in a general setting.

• Derivation of efficient influence function for general MSM parameters.

• Novel Bayesian TMLE for MSMs.

• Universal algorithm implemented in Julia using autodifferentiation.

• Application to estimate relationship between effect of intervention on
contraceptive use with number of children as an effect modifier in a
randomized field experiment.
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Future Work

• Strengthening Bernstein von-Mises result

• Developing methods for choosing between multiple working models.
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Summary

Where is improvement needed?

• Chapter 1: Temporal Models for Multiple Populations

• Chapter 2: B-spline Transition Model

Which interventions are effective in improving health outcomes?

• Chapter 3: Bayesian targeted learning for Marginal Structural Models
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Difference between B-splines and logistic model
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Estimation

• Let’s analyze the properties of the plug-in estimator.

• We can write

√
n (β◦n − β0) =

√
n(Pn − P0)D∗(P0)︸ ︷︷ ︸
 N(0,P0D∗(P0)2)

−
√
nPnD

∗(P◦n)︸ ︷︷ ︸
bias term

+
√
n(Pn − P0)(D∗(P◦n)− D∗(P0)) + op(1)︸ ︷︷ ︸

negligible

.

• We want to construct an estimator with a bias term of zero.
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A glimpse at how TMLE works

• The fluctuation and loss function are chosen to satisfy (among other
things) a key property:

D∗(P◦n) ∈ Span

(
∂

∂ε
L (P◦n(ε))

∣∣∣∣
ε=0

)
.

• Importantly, the TMLE solves the EIF of the target parameter:

EPn [D∗(P◦n(ε∗n))(O)] = 0.

• Under certain conditions, β̂TMLE is asymptotically normal and
efficient.
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Blueprint for fluctuation model

How do we choose the form of the fluctuation model P◦n(ε)? Our
contribution: a blueprint for the fluctuation model.
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Back to the motivating example

• First, we need to find the parts of P relevant to B and D∗.

• Recall the definition of B(P) and ΨCATE
P :

B(P) = arg min
β∈B

EP

[
ΨCATE

P (X )− (1,X )β
]

ΨCATE
P (x) = Q̄

(1)
P (x)− Q̄

(0)
P (x)

= EP [Y | A = 1,X = x ]− EP [Y | A = 0,X = x ]

• In addition, D∗(P) depends on gP(a, x) = P(A = a|X = x).

• The relevant parts of P are therefore QP (the marginal distribution of

X ), Q̄
(1)
P , Q̄

(0)
P , and gP .
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Back to the motivating example

• Suppose we have initial estimators of each part of P0 relevant to B
and D∗.
• To estimate QP0 , the marginal distribution of X under P0, we use the

empirical distribution of X , which we call Q◦n .
• To estimate Q̄

(0)
P0

, Q̄
(1)
P0

, and gP0 , we use estimators Q̄
◦,(0)
n , Q̄

◦,(1)
n , and

g◦n .

• Let P◦n ∈M be any law such that its relevant features coincide with

{Q◦n , Q̄
◦,(0)
n , Q̄

◦,(1)
n , g◦n}.
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Back to the motivating example

• Now we need to build a fluctuation submodel of each of the parts of
P relevant to B.

• Fluctuation indexed by ε ∈ Rp:

Q̄
◦,(1)
n,ε (x) = Q̄

◦,(1)
n (x) +

1

g◦P(1, x)
ε>(1,X )>

Q̄
◦,(0)
n,ε (x) = Q̄

◦,(0)
n (x)− 1

g◦P(0, x)
ε>(1,X )>

Q◦n,ε(x) ∝ exp(ε>D∗2,CATE(P◦n)(x))Q◦n(x)

• Negative log-likelihood loss function:

L(Q̄
◦,(0)
n,ε , Q̄

◦,(1)
n,ε ,Q◦n,ε,O) =

(
Y − Q̄

◦,(A)
n,ε

)2
− logQ◦n,ε(X ).
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