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Background

® The international community has set ambitious goals for improvement
in global health.
® Where is improvement needed?

® Chapters 1 and 2: contributions related to statistical estimation and
projection of global health indicators, with a focus on family planning.

® Which interventions are effective in improving health outcomes?

® Chapter 3: methods for estimating the effect of interventions on family
planning outcomes.
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@ Chapter 1: Temporal models for demographic and global health
outcomes in multiple populations

® Chapter 2: Flexible Modeling of Transition Processes with B-splines

© Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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@ Chapter 1: Temporal models for demographic and global health
outcomes in multiple populations
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Background

® There is interest in modeling demographic and health indicators in
order to measure progress towards international goals.

® Example: Under-5 Mortality Rate
® Data availability and quality are varied.

® Some countries have high quality USMR data from vital registration
systems, in other countries data may only come from surveys.

® Many statistical models have been created to provide estimates and
projections.

® Comparing across models can be difficult.

® This chapter: an overarching model class called Temporal Models
for Multiple Populations (TMMPs).
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e Published in International Statistical Review:

® Susmann, Herbert, Monica Alexander, and Leontine Alkema.
"Temporal Models for Demographic and Global Health Outcomes in
Multiple Populations: Introducing a New Framework to Review and
Standardise Documentation of Model Assumptions and Facilitate
Model Comparison.” International Statistical Review (2022).
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Under-5 Mortality Rate (USMR) Models

(A) IHME Data and Estimates

Under-five Mortality Rate Estimates in Senegal, 1950-2019
(B) UN IGME Data and Estimates
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A glance at the IHME GBD model...

The model for GPR was

He=[() +S:
f()~GP(M,C)
Where
¢ is the true log(5q0) at time ¢
f(t) is the baseline mortality risk
S, is excess mortality due to fatal discontinuities estimated independently of ()
M is the mean for the Gaussian process
€ is the covariance for the Gaussian process
Spatiotemporal smoothing

The spatiotemporal stage smooths the residuals between the predicted time series of 590 and the
adjusted raw data over time and across countries in the same GBD region. The predicted time series for
this smoother was obtained from the equation below; no random effects or survey type fixed effects
were included.

predictedsmy ., = exp[f; = log(LDI,,) + Bz * educationg, + @inrercepe] + P * HIVyy,

We first found the residuals between the predicted time series, above, and the adjusted points. We then
applied a combination of smoothing functions to these residuals. For each country-year, we weighted all

Chapter 1 (4/15) 9 /86



A glance at the UN IGME model...
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as summarized in block 1 (see Section 3.1). The models for the error term §; for observed log(USMR) are described separately for VR
and non-VR data in blocks 2a and 2b (see Section 3.2). Short-term projections are summarized in block 3 (see Section 3.3).
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Modeling Framework

® Let 1. be the true value of the indicator in country c at time t
(c=1,...,C, t=1,...7).

Observed data y;, i = 1,..., n with associated properties c[i], t[i], ...

® Process model describes evolution of 7. ;.

® Covariates
® Systematic trends

Data model describes relationship between y; and n[; ¢[-
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Modeling Framework

Process
Model

Data Model
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Data Model Examples

Examples of data models:

® Normal:

yi|77c[i],t[i]7 Ui2 ~ N(nc[i],t[i]a U,Z)

where y; € R and 0,2 is the sampling variance.

® Binomial:

Yilneqi, e ~ Binom(ni, nefi,«i)

where y;, n; are integers.
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Process Model

gl(nc,t) = g2(Xc,,tv ﬁc) + g3(t: Tlc,s#ts ac) + act +  €Ect
— =~

covariate systematic offset  smoothing
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Covariate component

gl(’]c,t) :gZ(XC,f7 66)+ g3(t«, Tlc,s#t ac) + act + €ct
- =~

covariate systematic offset  smoothing

® Regression function for incorporating covariates.
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Systematic component

gl(Tlc,t) :g2(Xc.tv ﬁc) +g3(t7 Ne,s#t» ac)JF act +  €ct
— =~

covariate systematic offset  smoothing

® Parametric function for modeling systematic temporal trends.
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gl('lc.t) :g2(XC.t~ /86) +g3(t: Tc,s#ts ac) +act+ Ect
-~

covariate systematic offset  smoothing

® The offset term incorporates external information, for example from a
separate modeling step.
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Smoothing Component

gl(ch,t) - g2(Xc.t¢ 5c) + g3(t« Nc,s#ts ac) + act + €t
— =~

covariate systematic offset  smoothing

® The smoothing component allows data-driven deviations from the
other components, while still enforcing smoothness.

® Many choices B-splines, Gaussian processes, AR(p), RW(p),
spatio-temporal smoothing, ...
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Hierarchical Modeling

® Each component introduces many country specific parameters that
need to be estimated.

® Hierarchical modeling is a way to share information between countries.

® Example: hierarchical model with one level of hierarchy for a
country-specific parameter 6.:

Oc | Ow, 09 ~ N(ewﬁg)
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Comparing the exam

ple models...
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Contributions

® A model class, Temporal Models for Multiple Populations (TMMPs),
that encompasses many existing demographic and health models.

® Model class makes a clear distinction between the process model and
the data model.
® Process model is split into building blocks: covariates, systematic
trends, offsets, and smoothing components.
® Detailed description of six existing models using TMMP notation, and
templates provided for documenting additional models as TMMPs.
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® Chapter 2: Flexible Modeling of Transition Processes with B-splines
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Background

® Some indicators have been observed to evolve similarly across
populations.
® They tend to follow a transition between stable states.
® Classic example: demographic transition.
® Transition from high total fertility rate and high under-5 mortality to
low fertility, low mortality.
® Existing statistical models for estimating and projecting trends in
these indicators draw on these patterns.
® This chapter: We propose a new type of model, called B-spline
Transition Models, for flexibly estimating indicators that follow
transitions.
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® Modern Contraceptive Prevalence Rate (mCPR) for married or
in-union women: proportion of married or in-union women of
reproductive age using (or with partner using) a modern contraceptive
method.

® Transition: low to high mCPR.

¢ Existing model: Family Planning Estimation Model (FPEM, Cahill et
al. 2018).

® Goal: estimate and project mCPR in countries from 1970-2030.

® Dataset aggregated by United Nations Population Division (UNPD)
from surveys conducted by governments or international organizations.
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Transition Models

e Qur contribution: a model class for indicators that follow a
transition.

® Transition Models have a process model given by

81(Nc,t) = g3(t. Neszee) + e
—_————— ~—~
systematic smoothing
® The systematic component has the following form:
QCv t= ::ka

g3(t7 77C,575t7 aC) = gl(T/C,tfl) + f(nc,tfla PCvBC)? t> t:a
gl(nc,t-i—l) - f(T}C,t+17 PC?ﬁC)? t < t:a

where Q. = {QC7 PC?I@C}'

® The function f is called the transition function.
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FPEM Example

® The Family Planning Estimation Model (FPEM) is an example of a
Transition Model (Cahill et al., 2018).

® Because 7.+ € (0,1), FPEM process model uses a logit transform:

logit(7c,t) = g3(t, e s, 0c) + €c i

® The FPEM transition function was chosen such that mCPR follows a
logistic growth curve:

(nc,tflfpc)wc

I Met—1 < Pe,
F(er1. Pe.Be) = 4 Pelieai-1) > Mlet=1 = Te
0, otherwise.

where Bc = {wc}, and the parameters can be interpreted as

® w.: rate parameter,
® P.: asymptote parameter.
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FPEM Example

Transition Function
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B-spline Transition Model

® Our contribution: estimate the transition function f while making
weaker functional form assumptions.

® Approach: estimate f using B-splines.
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B-spline Example
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B-spline Transition Model

® Define a transition function f;, as:

J
fb(nqta PCaBC) = Z hj(ﬂc,j) : Bj(nc,f/PC)v

J=1 coefficient  basis function

where P, is an asymptote parameter.

® Flexibility of f, can be tuned through the spline degree and number
and positioning of knots.
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Example B-spline Transition Function

Transition Function CPR
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Sharing information on shape of transition function

® Varying data availability across countries.

e \We would like to share information about the transition between
countries.

® Spline coefficients . ; are nested within sub-regions, regions, and
world.

® Hierarchical model on the spline coefficients . for j=1,..., J:

(s) (c)
BCJ | Bs[c O-ﬂ,J <BS[C],J (O-Baj) ) ’
(r (r) (s)
| Br[s]g’ ,B,J (’Br[s],j ( ﬁ,J) > ’
(N | pw) _(n) W) ((N)?
Brj 16 o5~ N (51 ’<‘75J> ) '
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Sharing information on shape of transition function
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Smoothing component

® Recall the process model has two components:

gl(nC,t) = g3(t7 Nc,s#ts ac) +  Ect
- 71 2 <~

systematic smoothing

® Smoothing component: AR(1) process of the form

6C,t’6C,t—17 TP~ N(P * €ct—1, 7_2)
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Smoothing component
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Data Model: connection to observed data

® lety;, i=1,...,n be the observed mCPR for country c[i] and year
y[i] from data source d[i].

For each observation we have an estimate s,-2 of the sampling error.

We also expect each data source to have additional non-sampling
2
error oy

Truncated normal data model:

2 2 2
Yilneg e oapiy ~ Ny (”c[ilvt[i]’ s+ Ud[i]> :
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Computation

® Model fit with full Bayesian inference.
® Implementation in Stan, including a fast B-spline algorithm in C4++-.

® Multiple specifications tested with different B-spline degrees and
number of knots.
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Choosing a spline specification

Validation exercise: hold out all observations after a cutoff year L = 2010.

95% Ul ‘ Error
% Below | % Included | % Above ‘ Cl Width x100 ‘ ME x100 | MAE x100
Model Check 2 (L = 2010), n =133
B-spline (d =2, K =5) | 3.76% 94.7% 1.5% 32.0 -1.670 4.64
B-spline (d =2, K=7) | 6.02% 91.7% 2.26% 315 -1.260 4.68
B-spline (d =3, K =5) | 3.76% | 94.7% 1.5% 32.4 -1.630 4.48
B-spline (d =3, K=7) | 3.76% 94% 2.26% 31.6 -0.965 4.57

95% Ul: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.

Chapter

2 (15/20)
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lllustrative Fits from B-spline Model

Bangladesh Indonesia Kenya
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Trends can be seen in regional and subregional transition

functions
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Comparison to a logistic type model

Validation exercise: hold out all observations after a cutoff year L = 2010.

95% Ul ‘ Error
% Below | % Included | % Above ‘ Cl Width x100 ‘ ME x100 | MAE x100
Model Check 2 (L = 2010), n =133
B-spline (d =2, K =5) | 3.76% 94.7% 1.5% 32.0 -1.670 4.64
Logistic 6.77% 92.5% 0.752% 32,7 -2.850 4.82

95% Ul: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Detailed Example: Rwanda

Rwanda
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Detailed Example: Rwanda

Transition Functions

A B
Logistic B-spline (d=2, K=5)
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Detailed Example: Rwanda

Smoothing component

C D
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Detailed Example: Rwanda

Modern Contraceptive Prevalence Rate

E F
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Contributions

® Subclass of Transition Models for indicators that follow transitions.

® B-spline Transition Model: flexible modelling approach based on
B-splines.

® Generated estimations and projections of mCPR in countries from
1970-2030.

® Found systematically different transitions in countries across regions.

® Flexible model framework that can be easily extended to new settings
and use cases.
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© Chapter 3: Automatic Bayesian Targeted Likelihood Estimation of
Marginal Structural Models
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Background

® Which interventions are effective in improving health outcomes?

® Marginal Structural Models provide one a way to summarize how the
effect of an intervention on an outcome changes within subgroups.

® This Chapter: We introduce a novel targeted Bayesian estimator for
the parameter of a Marginal Structural Model in a general setting.
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Motivating Example

® Randomized field experiment conducted in Lilongwe, Malawi, to
investigate effect of family planning intervention on contraceptive use
(Karra et al., 2020, 2022).

® |ntervention: broad-based intervention including information package
and counseling.

e Qutcome: contraceptive use two years after intervention.
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Scientific question

® Scientific question: does the treatment effect differ depending on
number of children at baseline?

® Potential example of Treatment Effect Modification.

® Marginal distribution of number of children:
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21
< 3004
200 193
. i
18
3 4 5 6 7

100 4

[ e S D G S S

Number of children at baseline
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Observed data

® For each participant, we have:
® X: set of 11 covariates measured at baseline, including number of
children X¢;
® A: indicator of randomization into intervention group;
® Y': indicator of contraceptive use at endline.
® let O01,...,0, be ni.i.d. draws of the generic variable
O = (X,A,Y) from the law Py of the experiment.
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Conditional Average Treatment Effect

¢ Conditional Average Treatment Effect (CATE):
WEATE(x) = Ep[Y |A=1,X =x] —=Ep[Y | A=0,X = ],
5(1 ~(0
= 0500 - (%)

® (Causally identifiable under “standard causal assumptions”
(consistency, positivity, no unmeasured confounders).
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An example of a Marginal Structural Model

® Approach: summarize the relationship between potential treatment
effect modifiers (X.) and conditional treatment effects (WSATE(X))
using a user-supplied working model.

® For instance, let B(P) € R? be the solution to the following
optimisation problem:

B(P) = arg minEp [(w,%‘ATE(X) - (1,XC)6)2} :
BER?
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An example of a Marginal Structural Model

B(P) = arﬂge]g\zin]Ep [( w,C;AT(X) - (1,XC)6>2]

conditional average treatment effect
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An example of a Marginal Structural Model

B(P) = arﬂge]g\zin]Ep [(W%ATE(X) - (1,1@5 )2]

linear working model
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An example of a Marginal Structural Model

B(P) = arg min| Ep [(\UEATE(X) - (LXc)B)z}
BER? l

squared-error risk
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An example of a Marginal Structural Model

B(P)|= arg minEp [(W%ATE(X) - (1,XC)5)2}
l BeR?

defined in terms of P
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What a plot of the results will look like

Intervention effect size

0 1 2 3 4 5 6 7 8 9
Number of children at baseline
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General Setting for MSMs

Observed data: O1,..., O, i.i.d. copies of a generic variable O ~ P.
Assume that Py is in a non-parametric statistical model M.

® The more we know about the law Py, the smaller the model M.
Assume that O = (Z, X) for variables Z € Z, X € X.

For all P € M, let Wp : X — R be a functional summary of P with
argument X.

For the motivating example:
e 0=(Y,AX), Z=(Y,A), X=X.
° Up(X)= EP[Y |A=1,X]—Ep[Y | A=0,X], the CATE
- aPx) - AV (x).
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Marginal Structural Models

® |dea: approximate Wp using a user-supplied working model.

® Working model: set {mg : 3 € B} of functions mg : ¥ — R with B a
parameter of dimension p.

® Loss function: L,(Vp(X),3)(X).

® Define the parameter of interest B as the solution to the optimization
problem:

B(P) =arg minEp [Ly(Vp(X), B)(X)].
BeB

® The combination of working model and loss function is called a
I\/larginal Structural Model (Robins et al., 2000; van der Laan and Rose, 2011).

® Causally identifiable under same assumptions as Wp.
® Qur contribution: a general framework for MSMs.
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Marginal Structural Models

M B

Danger! Infinite dimensional space visualized in two dimensions!
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Semi-parametric inference

® Goal: estimate By := B(Pp).
® What is the semi-parametric efficiency bound for estimating Gg?

® We can write any regular estimator of 3y as:
1 n
Bn — ,@0 + ; Z ICPO(Oi) —+ Op(n_1/2)’
i=1

where /Cp, is called an influence function of the parameter B at Py.

® The influence function with the smallest variance is called the efficient
influence function (EIF), which we denote D*(Py).

® The semi-parametric efficiency bound for estimating By is given by
varp,(D*(Po)(0))
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Efficient Influence Function of B(P)

Our contribution: we derived the EIF for the MSM parameter P — B(P)
in a general setting.

Theorem (Efficient Influence Function)

(Simplified) The target functional P — B(P) is pathwise differentiable at every
P € M, with an efficient influence function D*(P) given by

D*(P)(0) = M~ [D;(P)(0) + D3 (P)(X)],
where D; (P), D;(P) € L3(P) are given by

Di (P)(0) = VL(Wp(X), B(P))(X) x A*(P)(O),
D3 (P)(X) = L(Wp(X), B(P))(X),

and the normalizing matrix M is given by

M = —Ep [Ln(Wp(X), B(P))(X)]
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Efficient Influence Function of B(P)

For our motivating example:

Theorem

(Simplified) The target functional P — B(P) is pathwise differentiable at
every P € M, with an efficient influence function D*(P) given by

D*(P)(X,A,Y) = M1 {D{(P)(X, A, Y) + D3(P)(X)},
where

Di(PIX. A, Y) = { A s = = by = A 00) x0T,

D3(P)(X) = (Wp(X) — B(P)"(1,X)")(1,X)T,

and the normalizing matrix M is given by

M= —Ep [(1,X)T(1,X)] .
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Targeted Minimum Loss-Based Estimation

It turns out we can construct an estimator that achieves this
efficiency bound!
® Targeted Minimum Loss-Based Estimation (TMLE) (van der Laan and
Rose, 2011, 2018)

® Suppose we have an initial estimator P, of the pieces of Py relevant
to the MSM parameter B(Py).

® We can then form a plug-in estimator
gesn = B(P2).
® The plug-in estimator is biased!
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Plug-in estimation is biased

M B
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Targeted Minimum Loss-Based Estimation

® Targeted Minimum Loss-Based Estimation (TMLE): plug-in estimator
of the form

BT™ME = B(P;(€7))

where {P;(€) : € € RP} C M is a fluctuation of an initial estimator
P, of the pieces of Py relevant to 3, and €}, is chosen by minimising
the empirical risk induced by a well-chosen loss function L.
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TMLE: update initial estimate in direction of truth
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Bayesian TMLE

® Can we make this procedure Bayesian?

® Core idea: some choices of TMLE loss function £ can be interpreted
as defining a likelihood for the data O conditional on the parameter €
under the fluctuation submodel.

® We can then use Bayesian inference to estimate €! (Diaz et al., 2011; Diaz
et al., 2020)
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Bayesian TMLE

® Basic application of Bayes rule: posterior distribution of € is given by
n
Me(e | O, ..., 0n) o me(€) [] P (O | €)
i=1

where 7¢ is a prior distribution for € and p;(O | €) is the likelihood of
O under Py (¢€).

® Once we have a posterior distribution for € we can map it to a
posterior distribution for 3.
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Bayesian TMLE

M B
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Bernstein von-Mises

® Desired result: the posterior distribution for 3 converges to a normal
distribution centered on the frequentist TMLE with variance given by
the variance of the efficient influence function.

® Qur contribution: We prove an oracular version that provides
conditions under which the posterior distribution based on fluctuation
of Py will converge to the optimal distribution.
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Bayesian TMLE

M B
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Bernstein von-Mises

® Let p2(O | €) be the likelihood of the submodel fluctuating Pp.
® Key conditions:
® The gradient satisfies

= D*(Po)(0).

€=0

9 0
& |Og pn(O|€)

® The Hessian satisfies

02
Po | 52z 0E 2010

] — R[D*(Po)D* (P) 1.
e=0
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Bernstein von-Mises

Theorem (Oracular Bernstein von-Mises)

(Simplified) Let N (p, X) denote the multivariate normal distribution with mean
vector v and covariance matrix .. Then, under certain assumptions,

ING (- | O1,...,0n) = N (A, Po[D*(Po)D*(Po) 1) |1 = op(1)

where

A% = 2= 3 AN (PO D(R)(). ®
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Universal Algorithm

® |n practice, users may want to try several working models
{mg : B € B} and loss functions Lp,.

® We could anticipate this and choose several working models and loss
functions and hand-code the required derivatives. But what if a user
wants to use something we haven't implemented?

® An alternative is to use automatic differentiation to compute the
required derivatives automatically.

® QOur contribution: We implemented a universal algorithm in Julia
that uses auto-differentiation to automatically adapt the fluctuation
model and efficient influence function to arbitrary well-chosen working
models and loss functions.

Chapter 3 (25/29) 74 / 86



Motivating Example: Results
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Motivating Example: Results

Intervention effect size
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Contributions

® Definition of MSMs in a general setting.

® Derivation of efficient influence function for general MSM parameters.
® Novel Bayesian TMLE for MSMs.

® Universal algorithm implemented in Julia using autodifferentiation.

® Application to estimate relationship between effect of intervention on
contraceptive use with number of children as an effect modifier in a
randomized field experiment.
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® Strengthening Bernstein von-Mises result

® Developing methods for choosing between multiple working models.
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Where is improvement needed?
® Chapter 1: Temporal Models for Multiple Populations
® Chapter 2: B-spline Transition Model

Which interventions are effective in improving health outcomes?

® Chapter 3: Bayesian targeted learning for Marginal Structural Models
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® | et's analyze the properties of the plug-in estimator.

® \We can write

V(85 = Bo) =V/n(Pn — Po)D"(Po)
~~N(0,PyD*(Pg)2)
— /nP,D*(Py)
bias term
+ V/n(Py = Po)(D*(Py) — D*(Py)) + 0,(1).

negligible

® \We want to construct an estimator with a bias term of zero.
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A glimpse at how TMLE works

® The fluctuation and loss function are chosen to satisfy (among other
things) a key property:
e—O> .

® |mportantly, the TMLE solves the EIF of the target parameter:

L (P3(©)

D*(P,) € Span (

Ep,[D*(Py(€:))(0)] = 0.

® Under certain conditions, BATMLE is asymptotically normal and
efficient.
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Blueprint for fluctuation model

How do we choose the form of the fluctuation model P;(€)? Our
contribution: a blueprint for the fluctuation model.

TMLE Blueprint. The following choice of loss functions and fluctuation model satisfy the condi-
tions (L1), (L2), and (M1).

e For any P € M with corresponding 4p, @p = {Q(J) ...,Qg)}, Qp, and np, define the
parametric fluctuation model as

QLL(0) = QR(0) + Hi(0)e Y L(yr(X), B(P))(X)
QY2(0) = Q(0) + Hi(0)eT VL(¥p(X), BP))(X),

Qr(X) = Cexp (¢ L(wr(X), BP))(X)) Qr(X).

& Choose L£; and H; for j =1,...,J such that

Ec U(0), 0)H,(0) = A*(P)(0).

i=1
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Back to the motivating example

® First, we need to find the parts of P relevant to B and D*.
Recall the definition of B(P) and WEATE:

B(P) = arg min Ep [WEATE(X) — (1, X)3]
BeB

VEATE() = Qp) () - Q)
—Ep[Y |A=1,X=x] —Ep[Y | A=0,X = x]

In addition, D*(P) depends on gp(a,x) = P(A = a|X = x).
The relevant parts of P are therefore Qp (the marginal distribution of
X), (:),(31), (:),(30), and gp.
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Back to the motivating example

® Suppose we have initial estimators of each part of Py relevant to B
and D*.

® To estimate Qp,, the marginal distribution of X under Py, we use the
empirical distribution of X, which we call Qj.

® To estimate Q,(,?)), @,(3?, and gp,, we use estimators Q2@ 3™ and
&n-
® Let P, € M be any law such that its relevant features coincide with

(@5, Q7. Q™ g3}
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Back to the motivating example

® Now we need to build a fluctuation submodel of each of the parts of
P relevant to B.

® Fluctuation indexed by € € RP:

501 () — G2 L 7a.x)7
e () = Q™00 + o Sye (LX)
50:00) () — 320 () — T x)T
() = Q™00 = e ge (LX)

Qne(x) o exp(e’ D3 carn(Pr)(x)) Q5 ()

® Negative log-likelihood loss function:

=0 =0 o ~O 2 [e]
L@, 05, @ 0) = (¥ = GnY)” — log @.(X).
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