Flexible Modeling of Transition Processes via Bayesian Spline Rate Models with Application to Estimating and Projecting Modern Contraceptive Prevalence

Herb Susmann Leontine Alkema

University of Massachusetts Amherst

July 2022

UMassAmherst

- Increasing interest in estimates and projections of demographic and health indicators.
- Some indicators have been observed to evolve similarly across populations.
 - They tend to follow a *transition* between stable states.
- Classic example: demographic transition.
 - Transition from high total fertility rate and high under-5 mortality to low fertility, low mortality.
- Existing statistical models for estimating and projecting trends in these indicators draw on these patterns.
- **This presentation:** We propose a new type of model, called *B-spline Transition Models*, for flexibly estimating indicators that follow transitions.

- Modern Contraceptive Prevalence Rate (mCPR) for married or in-union women: proportion of married or in-union women of reproductive age using (or with partner using) a modern contraceptive method.
- Transition: low to high mCPR.
- Existing model: Family Planning Estimation Model (FPEM, Cahill et al. 2018).
- Goal: estimate and project mCPR in countries from 1970-2030.
- Dataset aggregated by United Nations Population Division (UNPD) from surveys conducted by governments or international organizations.

Raw Data

Example Fits

- Let $\eta_{c,t}$ be the true value of the indicator in country c at time t (c = 1, ..., C, t = 1, ..., T).
- Observed data y_i , i = 1, ..., n with associated properties c[i], t[i], ...
- Process model describes evolution of $\eta_{c,t}$.
- Data model describes relationship between y_i and $\eta_{c[i],t[i]}$.

Modeling Framework

Transition Models

- **Our contribution:** a model class for indicators that follow a transition.
- Transition Models have a process model given by

$$g_1(\eta_{c,t}) = \underbrace{g_3(t, \eta_{c,s\neq t}, \alpha_c)}_{\text{systematic}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}}.$$

• The systematic component has the following form:

$$g_{3}(t,\eta_{c,s\neq t},\alpha_{c}) = \begin{cases} \Omega_{c}, & t = t_{c}^{*}, \\ g_{1}(\eta_{c,t-1}) + f(\eta_{c,t-1},P_{c},\beta_{c}), & t > t_{c}^{*}, \\ g_{1}(\eta_{c,t+1}) - f(\eta_{c,t+1},P_{c},\beta_{c}), & t < t_{c}^{*}, \end{cases}$$

where $\alpha_{c} = \{\Omega_{c}, P_{c}, \beta_{c}\}.$

• The function *f* is called the *transition function*.

• Define a transition function f_b as:

$$f_b(\eta_{c,t}, P_c, \beta_c) = \sum_{j=1}^J \underbrace{h_j(\beta_{c,j})}_{\text{coefficient}} \cdot \underbrace{B_j(\eta_{c,t}/P_c)}_{\text{basis function}},$$

where P_c is an asymptote parameter.

• Flexibility of *f_b* can be tuned through the spline degree and number and positioning of knots.

Example B-spline Transition Function

Recall the process model has two components:

$$g_1(\eta_{c,t}) = \underbrace{g_3(t, \eta_{c,s \neq t}, \alpha_c)}_{\text{systematic}} + \underbrace{\epsilon_{c,t}}_{\text{smoothing}} .$$

• Smoothing component: AR(1) process of the form

$$\epsilon_{c,t}|\epsilon_{c,t-1}, \tau, \rho \sim N(\rho * \epsilon_{c,t-1}, \tau^2)$$

Smoothing component

- Let y_i , i = 1, ..., n be the observed mCPR for country c[i] and year y[i] from data source d[i].
- For each observation we have an estimate s_i^2 of the sampling error.
- We also expect each data source to have additional non-sampling error $\sigma^2_{d[i]}$.
- Truncated normal data model:

$$y_i | \eta_{c[i],t[i]}, \sigma_{d[i]}^2 \sim N_{(0,1)} \left(\eta_{c[i],t[i]}, s_i^2 + \sigma_{d[i]}^2 \right).$$

Illustrative Fits

Kenya Raw Data

Kenya Transition Function

6 / 22

Kenya Smoothing Component

Kenya mCPR Estimates

Trends can be seen in regional and subregional transition functions

- Subclass of *Transition Models* for indicators that follow transitions.
- B-spline Transition Model: flexible modelling approach based on B-splines.
- Generated estimations and projections of mCPR in countries from 1970-2030.
- Found systematically different transitions in countries across regions.
- Flexible model framework that can be easily extended to new settings and use cases.

Validation exercise: hold out all observations after a cutoff year L = 2010.

	95% UI				Error	
	% Below	% Included	% Above	Cl Width $\times 100$	${\sf ME}$ $ imes$ 100	MAE ×100
Model Check 2 (L = 2010), n = 133						
B-spline ($d = 2, K = 5$)	3.76%	<mark>94.7%</mark>	1.5%	32.0	-1.670	4.64
B-spline ($d = 2, K = 7$)	6.02%	91.7%	2.26%	31.5	-1.260	4.68
B-spline ($d = 3, K = 5$)	3.76%	94.7%	1.5%	32.4	-1.630	4.48
B-spline ($d = 3, K = 7$)	3.76%	94%	2.26%	31.6	-0.965	4.57

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error. Measures calculated using the last held-out observation within each area.

Sharing information on shape of transition function

