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Background

• Increasing interest in estimates and projections of demographic and
health indicators.

• Some indicators have been observed to evolve similarly across
populations.

• They tend to follow a transition between stable states.

• Classic example: demographic transition.
• Transition from high total fertility rate and high under-5 mortality to

low fertility, low mortality.

• Existing statistical models for estimating and projecting trends in
these indicators draw on these patterns.

• This presentation: We propose a new type of model, called B-spline
Transition Models, for flexibly estimating indicators that follow
transitions.
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Case Study

• Modern Contraceptive Prevalence Rate (mCPR) for married or
in-union women: proportion of married or in-union women of
reproductive age using (or with partner using) a modern contraceptive
method.

• Transition: low to high mCPR.

• Existing model: Family Planning Estimation Model (FPEM, Cahill et
al. 2018).

• Goal: estimate and project mCPR in countries from 1970-2030.

• Dataset aggregated by United Nations Population Division (UNPD)
from surveys conducted by governments or international organizations.
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Raw Data
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Example Fits
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Modeling Framework

• Let ηc,t be the true value of the indicator in country c at time t
(c = 1, . . . ,C , t = 1, . . .T ).

• Observed data yi , i = 1, . . . , n with associated properties c[i ], t[i ], ...

• Process model describes evolution of ηc,t .

• Data model describes relationship between yi and ηc[i ],t[i ].
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Modeling Framework
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Transition Models

• Our contribution: a model class for indicators that follow a
transition.

• Transition Models have a process model given by

g1(ηc,t) = g3(t,ηc,s ̸=t ,αc)︸ ︷︷ ︸
systematic

+ ϵc,t︸︷︷︸
smoothing

.

• The systematic component has the following form:

g3(t,ηc,s ̸=t ,αc) =


Ωc , t = t∗c ,

g1(ηc,t−1) + f (ηc,t−1,Pc ,βc), t > t∗c ,

g1(ηc,t+1)− f (ηc,t+1,Pc ,βc), t < t∗c ,

where αc = {Ωc ,Pc ,βc}.
• The function f is called the transition function.
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B-spline Transition Model

• Define a transition function fb as:

fb(ηc,t ,Pc ,βc) =
J∑

j=1

hj(βc,j)︸ ︷︷ ︸
coefficient

· Bj(ηc,t/Pc)︸ ︷︷ ︸
basis function

,

where Pc is an asymptote parameter.

• Flexibility of fb can be tuned through the spline degree and number
and positioning of knots.
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Example B-spline Transition Function
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Smoothing component

• Recall the process model has two components:

g1(ηc,t) = g3(t,ηc,s ̸=t ,αc)︸ ︷︷ ︸
systematic

+ ϵc,t︸︷︷︸
smoothing

.

• Smoothing component: AR(1) process of the form

ϵc,t |ϵc,t−1, τ, ρ ∼ N(ρ ∗ ϵc,t−1, τ
2)
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Smoothing component
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Data Model: connection to observed data

• Let yi , i = 1, . . . , n be the observed mCPR for country c[i ] and year
y [i ] from data source d [i ].

• For each observation we have an estimate s2i of the sampling error.

• We also expect each data source to have additional non-sampling
error σ2

d [i ].

• Truncated normal data model:

yi |ηc[i ],t[i ], σ2
d [i ] ∼ N(0,1)

(
ηc[i ],t[i ], s

2
i + σ2

d [i ]

)
.
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Illustrative Fits
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Kenya Raw Data
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Kenya Transition Function
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Kenya Smoothing Component
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Kenya mCPR Estimates
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Trends can be seen in regional and subregional transition
functions
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Summary

• Subclass of Transition Models for indicators that follow transitions.

• B-spline Transition Model: flexible modelling approach based on
B-splines.

• Generated estimations and projections of mCPR in countries from
1970-2030.

• Found systematically different transitions in countries across regions.

• Flexible model framework that can be easily extended to new settings
and use cases.

Herb Susmann, Leontine Alkema Flexible Modeling of Transition Processes via Bayesian Spline Rate ModelsJuly 2022 20 / 22



Choosing a spline specification

Validation exercise: hold out all observations after a cutoff year L = 2010.
95% UI Error

% Below % Included % Above CI Width ×100 ME ×100 MAE ×100

Model Check 2 (L = 2010), n = 133

B-spline (d = 2, K = 5) 3.76% 94.7% 1.5% 32.0 -1.670 4.64

B-spline (d = 2, K = 7) 6.02% 91.7% 2.26% 31.5 -1.260 4.68

B-spline (d = 3, K = 5) 3.76% 94.7% 1.5% 32.4 -1.630 4.48

B-spline (d = 3, K = 7) 3.76% 94% 2.26% 31.6 -0.965 4.57

95% UI: 95% uncertainty interval. ME: median error. MAE: median absolute error.

Measures calculated using the last held-out observation within each area.
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Sharing information on shape of transition function
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