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Resources

• Annotated slides: http://herbsusmann.com/paa2021

• Preprint: https://arxiv.org/abs/2102.10020

http://herbsusmann.com/paa2021/
https://arxiv.org/abs/2102.10020
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Background

• There is interest in modeling demographic and health
indicators in order to measure progress towards international
goals.

• Data availability and quality are varied.

• Many statistical models have been created to provide
estimates and projections.

• Comparing across models can be difficult.

• Proposed overarching model class: Temporal Models for
Multiple Populations (TMMPs).
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Case Study: U5MR
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Modeling Framework

• True value of indicator: ηc,t for c = 1, . . . ,C , t = 1, . . .T .
• Process model describes evolution of ηc,t .

• Covariates
• Systematic trends

• Observed data yi , with associated properties c[i ], t[i ], s[i ], ...

• Data model describes relationship between yi and ηc[i ],t[i ].
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Modeling Framework

ηc,t ηc,t+1 ηc,t+2 ηc,t+3

y1 y2

Process
Model

Data Model



8/22

Process Model

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing
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Covariate component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Regression function for incorporating covariates.

• Example: IHME U5MR

g2(Xc,t ,βc) = exp
[
βc,1 · log(X LDI

c,t ) + β2,c · XEDU
c,t + β3,c

]
+ β4,cx

HIV
c,t
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Systematic component

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Parametric function for modeling systematic temporal trends.

• Example: modeling the rate of change in adoption of modern
family planning as following logistic growth
[Cahill et al., 2018].
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Offset

g1(ηc,t) =g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The offset term incorporates external information, for example
from a separate modeling step.

• Example: IHME U5MR model uses an offset derived from the
smoothed residuals of a separate mixed-effects model.
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Smoothing component

g1(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• The smoothing component allows data-driven deviations from
the other components, while still enforcing smoothness.

• Many choices B-splines, Gaussian processes, AR(p), RW(p),
spatial smoothing (ICAR), ...

• Model class introduces some additional structure to help
understand the smoothing component.
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Smoothing component

• Define εc = [εc,1, · · · , εc,T ].

• Smoothing model defined as

εc = Bcδc ,

where Bc is a full rank matrix, and

4rδc ∼ N (0,Σc)

with Σc defined via an autocovariance function s(t1, t2).
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Smoothing component

• UN-IGME: RW(2), cubic B-splines with Bc,t,k = bc,k(t),
r = 2, and

s(t1, t2) = κ2I (t1 = t2)

• IHME: Matérn Gaussian Process, Bc = I , r = 0, and

sMatérn(t1, t2) = κ2 21−ν

Γ(ν)

(√
2ν
|t1 − t2|

`

)ν
Kν

(√
2ν
|t1 − t2|

`
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Smoothing component
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Estimation

• Each component introduces many unit specific parameters
that need to be estimated.

• Hierarchical modeling is a way to share information between
units.

• UN-IGME: hierarchical model on RW(2) variance

• IHME: fixed smoother hyperparameters based on data
availability
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UN-IGME U5MR Model
• Process model [Alkema and New, 2014]

log (ηc,t) = g3(t, ηc,s 6=t ,αc)︸ ︷︷ ︸
systematic

+ εc,t︸︷︷︸
smoothing

• Systematic component during estimation period:

g3(t, ηc,s 6=t ,αc) = αc,0 + αc,1(t − t∗c )

• Smoothing component during estimation period: cubic
B-splines with Kc knots per country and RW(2) process on
spline coefficients

εc = Bcδc ,

where after two levels of differencing (r = 2), δc is normally
distributed with mean zero:

∆2δc ∼ N(0, σ2
δ,c I ).
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IHME U5MR Model
• Process model [Dicker et al., 2018]

log10(ηc,t) = g2(Xc,t ,βc)︸ ︷︷ ︸
covariate

+ ac,t︸︷︷︸
offset

+ εc,t︸︷︷︸
smoothing

• Covariate component:

g2(Xc,t ,βc) = exp
[
βc,1 · log(X LDI

c,t ) + β2,c · XEDU
c,t + β3,c

]
+ β4,cx

HIV
c,t

• Offset: adjusts covariate component using smoothed residuals
from separate mixed-effects model.

• Smoother: Gaussian process with no transformation or
differencing (B = I , εc = δc , r = 0) and Matérn covariance
function

δc ∼ N(0,Σc).
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U5MR Model Comparison
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Additional Examples

Our preprint includes additional examples of existing models
written using the TMMP notation:

• Family Planning [Cahill et al., 2018]

• Neonatal Mortality [Alexander and Alkema, 2018]

• Maternal Mortality [Alkema et al., 2017]

• Subnational Mortality [Alexander et al., 2017]

We also include a table template for documenting models in
TMMP form.



21/22

Discussion

• Problem: many existing models using different approaches
and notations, hard to compare across them
• We introduce Temporal Models for Multiple Populations

(TMMPs)
• Model class makes a clear distinction between the process

model and the data model.
• Process model is split into building blocks: covariates,

systematic trends, offsets, and smoothing components.

• TMMP framework useful for:
• Systematizing model documentation,
• Facilitating comparisons between existing models,
• Developing new models.

• To improve model comparison, we propose that standardized
documentation be considered for GATHER reporting
guidelines

• Contact: Herb Susmann (hsusmann@umass.edu, @herbps10)

http://gather-statement.org/
hsusmann@umass.edu
https://twitter.com/herbps10
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