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Temporal models for demographic and global health outcomes in
multiple populations: Introducing a new framework to review and
standardize documentation of model assumptions and facilitate model
comparison

Herbert Susmann, Monica Alexander, Leontine Alkema

There is growing interest in producing estimates of demographic and global health indicators in populations with limited
data. Statistical models are needed fo combine data from multiple data sources into estimates and projections with
uncertainty. Diverse modeling approaches have been applied to this problem, making comparisons between models
difficult. We propose a model class, Temporal Models for Multiple Populations (TMIMPs), to facilitate documentation of
model assumptions in a standardized way and comparison across models. The class distinguishes between latent trends
and the observed data, which may be noisy or exhibit systematic biases. We provide general formulations of the process
model, which describes the latent trend of the indicator of interest. We show how existing models for a variety of indicators
can be written as TMMPs and how the TMMP-based description can be used to compare and contrast model assumptions.
We end with a discussion of outstanding questions and future directions


http://herbsusmann.com/paa2021/
https://arxiv.org/abs/2102.10020

Background UMassAmbherst

® There is interest in modeling demographic and health
indicators in order to measure progress towards international
goals.

® Data availability and quality are varied.

® Many statistical models have been created to provide
estimates and projections.

e Comparing across models can be difficult.

® Proposed overarching model class: Temporal Models for
Multiple Populations (TMMPs).



Case Study: USMR

(A) IHME Data and Estimates
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Modeling Framework UMassAmherst

True value of indicator: nc; forc=1,...,C, t=1,...T.
® Process model describes evolution of 7. ;.

® Covariates
® Systematic trends

Observed data y;, with associated properties c[i], t[i], s[i], ...

Data model describes relationship between y; and Neli],tli]-



Modeling Framework UMassAmherst

Process
Model

Data Model



Process Model UMassAmberst

gl(nc,t) = g2(Xc,ta ﬁc) + g3(t7 Tlc,s#t> ac) + act +  €ct
- =~

covariate systematic offset  smoothing




Covariate component UMassAmberst

gl(nc,t) :g2(Xc,taBC)+ g3(f, Tlc,s#t» ac) + act +  €ct
— ~~

covariate systematic offset  smoothing

® Regression function for incorporating covariates.
® Example: IHME U5MR

g2(Xe.t. Be) =exp |Bey - 10g(XED) + Bo.c - XEPY + .|

HIV
+ B4,Cxc7t



Systematic component UMassAmberst

g1(ne,t) =g2(Xe . Be) +83(t, N s, 0c)+ ace +  €c
— —~~

covariate systematic offset  smoothing

® Parametric function for modeling systematic temporal trends.

® Example: modeling the rate of change in adoption of modern
family planning as following logistic growth
[Cahill et al., 2018].



Oﬂ:S et UMassAmbherst

~—~

covariate systematic offset  smoothing

gl(nc.t) :gZ(Xc.t-, ﬁc) +g3(t' Tlc,s#ts ac) + de,t +  €ct
—

® The offset term incorporates external information, for example
from a separate modeling step.

® Example: IHME U5MR model uses an offset derived from the
smoothed residuals of a separate mixed-effects model.



Smoothing component UMass Ambherst

gl(’]c,t) - gQ(XcAtA Bc) Jrg?)(tv Tc,s#ts ac) + act + €c,t
——

covariate systematic offset  smoothing

® The smoothing component allows data-driven deviations from
the other components, while still enforcing smoothness.

® Many choices B-splines, Gaussian processes, AR(p), RW(p),
spatial smoothing (ICAR), ...

® Model class introduces some additional structure to help
understand the smoothing component.



Smoothing component UMass Ambherst

® Define €. = [ec1,- -+ ,€c,T]

® Smoothing model defined as
€c = Bcd,
where B is a full rank matrix, and
Nde ~ N(0,X,)

with X, defined via an autocovariance function s(t1, t2).



Smoothing component UMass Ambherst

® UN-IGME: RW(2), cubic B-splines with B+ x = b «(t),
r=2, and

S(tl, t2) = 1432/(1‘1 = t2)

e |[HME: Matérn Gaussian Process, B. = I, r =0, and

s (11, 1) = 22 (vl 2\ (el el
atérn ) r(l/) f v ﬁ




Smoothing component
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Estimation UMassAmbherst

® Each component introduces many unit specific parameters
that need to be estimated.

® Hierarchical modeling is a way to share information between
units.
e UN-IGME: hierarchical model on RW(2) variance

e |HME: fixed smoother hyperparameters based on data
availability



UN-IGME U5MR Model UMassAmherst
® Process model [Alkema and New, 2014]

log (1c,t) = g3(t, Ne,s#ts ac)+ ey
—_——— ~—~
systematic smoothing

e Systematic component during estimation period:

*

g3(ta Nec,s#t ac) = Qco + O‘C,l(lL - tc)

® Smoothing component during estimation period: cubic
B-splines with K. knots per country and RW(2) process on
spline coefficients

€Ec = Bc(sCa

where after two levels of differencing (r = 2), d. is normally
distributed with mean zero:

N2dc ~ N(0, 05 .1).



IHME USMR Model UMassAmherst

® Process model [Dicker et al., 2018]

IOglO(nC,t) = g2(XC,t=5c) + act + €t
—— =~

covariate offset  smoothing

® Covariate component:

gQ(Xc,t: 5c) = exp Bc,l . IOg(XcL,tDI) + ﬁ2,c : XCE,tDU + ﬁ3,c]
+ Ba,extY

® Offset: adjusts covariate component using smoothed residuals
from separate mixed-effects model.

® Smoother: Gaussian process with no transformation or
differencing (B = I, e. = 6., r = 0) and Matérn covariance
function

dc ~ N(0, ).



USMR Model Comparison UMass Amberst

GBD B3
Thet crisis-free USMR. erisis-fron USMR.
ai() logyg log
Proces: model formula Giley) — e XenBo) + | gilnes) — maloe) ey
e+ Eor
Covariate Component
aa(:) non-linear regression for-
mula (Equation 14)
Covariabe: LDI, EDU, HIV
Systematic Component
@) ttog b [t £2), with £ & middle of observation
period
a, intercept @ and slope .
Offsets
act offscts  obtained  from

smoothed  residuals of a
mixec-effects  regression

model fit
Smoothing Component e, — B4,
B B I Bei — cubic B-splines, knots every 2.5 vears
(b, 12) Matérn indep. s{t;.t2) — o2 M(t; — b2)
T 0 2
Kae Koo — (B} Kie — {2, Ko}
Projections (if not defaulting to estimation model)
Projections Togarithmic pooling approach: for projections,

Dafep ~ N(Tes,Oep),
Tk — W-GH(1-W) Asdg 1,
B - WVA(1-W)-B., .

o = - - DA 19/22



Additional Examples UMassAmberst

Our preprint includes additional examples of existing models
written using the TMMP notation:

¢ Family Planning [Cahill et al., 2018]

¢ Neonatal Mortality [Alexander and Alkema, 2018]
® Maternal Mortality [Alkema et al., 2017]

¢ Subnational Mortality [Alexander et al., 2017]

We also include a table template for documenting models in
TMMP form.



Discussion UMassAmbherst

® Problem: many existing models using different approaches
and notations, hard to compare across them

® We introduce Temporal Models for Multiple Populations
(TMMPs)

® Model class makes a clear distinction between the process
model and the data model.

® Process model is split into building blocks: covariates,
systematic trends, offsets, and smoothing components.

o TMMP framework useful for:

® Systematizing model documentation,
® Facilitating comparisons between existing models,
® Developing new models.
® To improve model comparison, we propose that standardized
documentation be considered for GATHER reporting
guidelines

e Contact: Herb Susmann (hsusmann@umass.edu, @herbps10)


http://gather-statement.org/
hsusmann@umass.edu
https://twitter.com/herbps10
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