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Longitudinal Generalizations of the Average

Treatment Effect on the Treated for Multi-valued and

Continuous Treatments
Herbert Susmann, Nicholas T. Williams, Kara E. Rudolph, Ivan Diaz

The Average Treatment Effect on the Treated (ATT) is a common causal parameter
defined as the average effect of a binary treatment among the subset of the population

receiving treatment. We propose a novel family of parameters, Generalized ATTs (GATTS),

that generalize the concept of the ATT to longitudinal data structures, multi-valued or
continuous treatments, and conditioning on arbitrary treatment subsets. We provide a
formal causal identification result that expresses the GATT in terms of sequential
regressions, and derive the efficient influence function of the parameter, which defines
its semi-parametric efficiency bound. Efficient semi-parametric inference of the GATT
requires estimating the ratios of functions of conditional probabilities (or densities); we
propose directly estimating these ratios via empirical loss minimization, drawing on the
theory of Riesz suggest that ion of the density ratios
using Riesz representation have better stability in finite samples. Lastly, we illustrate the
use of our methods to evaluate the effect of chronic pain management strategies on the
development of opioid use disorder among Medicare patients with chronic pain.
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Takeaways

» \We generalize the average treatment effect on the treated
to longitudinal settings and continuous treatments.

> We show how Riesz learning can be used to stabilize
estimation of longitudinal propensity scores.
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Example
» Exposure: measurements of human PM2.5 exposure over
time.
» Qutcome: respiratory function.
» Intervention: reduce PM2.5 by 10%.

» Causal question: What would be the average respiratory
function under the intervention among participants with high
PM2.5 exposures?
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Average Treatment Effect on the Treated (ATT)

» Structural Causal Model:

—
L=f(U.), L Y
A= fA(La UA)a \ /
Y = fy(L, A, Uy).

A
» Causal estimand:

W =E[Y(1)- Y(0) ]| A=1].

» Identification assumptions

» No unmeasured confounding: Uy L Ux or Uy 1L U;.
» Positivity: if P(A=1|X) > 0, then P(A =0[X) > 0.
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Generalizing the ATT

» Longitudinal data structures
> Now we have L1, Ay, Ly, Ap,.. ., L ALY
» Multi-valued or continuous treatments, modified treatment
policies
» Now A can live in any space A
» Condition on arbitrary treatment status
» Instead of conditioning on A =1, we conditionon Ae BC A
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Longitudinal Notation

Notation
» H, is the history of all variables up to t.
» Overlines indicate history: e.g. A, is A; from t =1 to 7.

» Underlines indicate future: e.g. A; is A; fromt =1 to 7.
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Longitudinal Structural Causal Model

Forte{1,...,7},

Lt = th(Atfla Ht—la UL.t)v
At = fAt(Hta UAft)a
Y = fy(A-, Hy, Uy).

Notation

H; is the history of all variables up to right before A;.
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Longitudinal DAG

Ly

—

Figure: Example of the assumed Longitudinal DAG with 2 time points.
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Natural Value of Treatment

Intervening to set A; < a; induces a counterfactual value for A;,
which is called its natural value of treatment, written Ap(az).

/\

a Az(a1)

Ly

Figure: Suppose we fix A < aj, where a; may be a function of L;. This
induces counterfactual values of L,, Ay, and Y.
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Modified Treatment Policies

Definition (Diaz JASA 2023)

The intervention A¢ is called a Longitudinal Modified
Treatment Policy (LMTP) if it has a representation

Al = d(A(ALL), Hi(AL 1))
for an arbitrary function d.

Notation
> A? | is the history of the intervention up to time t — 1.

> A.(A? ) is the natural value of treatment at time t under
intervention history.

» H,(A? ) is counterfactual history under intervention history.
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Modified Treatment Policies

Example (Shift Modified Treatment Policy)

Suppose there exists some u; such that P(A; < u¢|Hy = hy) =1
forall t € {1,...,7}. For some fixed J, define the intervention as

ar + 5, if dt < ut(ht)
dt, If dt > Ut(ht)

-4,
-0

d(at, ht) = {

Shift the natural value of treatment up by §, as long as we stay
within the support of the data. Otherwise, leave the natural value
of treatment as is.

—~
NYU Grossman

hool of Medicil
\— School of Medicine 12 /28



Generalized ATT Parameter

» We propose a generalized version of the ATT, which we call
Generalized ATTs (GATTs).

» The GATT parameter is defined as:
0" =E [Y(Ad) | A(d) € B] .

» The vector A(d) = (A1, Az(d1), ..., A-(dr_1)) is called the
longitudinal natural value of treatment.

» The longitudinal conditioning set /3 is an arbitrary subset of
the longitudinal treatment space.
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Generalizing the ATT

» The GATT parameter is defined as:
o = E [Y(Ad) | A(d) € B} .
> Note that we condition on the longitudinal natural value of
treatment A(d) € B, rather than the observed exposures
Ac B
g — E [Y(Ad) |Ae B] .

» Intuition: conditioning on A would be conditioning on
mediators.
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Longitudinal DAG

Ly

T

Figure: Example of the assumed Longitudinal DAG with 2 time points.
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Example

>

v

e
NYU Grossman

Exposure: Let A; denote the particulate matter PM2.5 that
an individual is exposed to at time t.

Outcome: Let Y be a measure of respiratory function.
Intervention: reduce PM2.5 by 10%.
Modified Treatment Policy:

d(at, ht) =0.9 x dt.

Conditioning set: exposure over the EPA standard at time 1:

B={A:A>09}.
Generalized ATT:

0* = E[Y(AY) | A(d) € B.
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Identification Assumptions

Notation
Underlines indicate the future of a variable, e.g. Up ;. are all
Ua;t from t 41 to 7.

» Strong sequential randomization: For all t € {1,...,7},
Uaedb(Upe1, U ei1)He
» Positivity: For all t € {1,...,7}, if
(a¢, ht) € Support{A:, H; | A: € B:}
then
(d(at, ht), ht) € Support{A¢, H;}.

If there is positive probability of A; = a;, there has to also be
positive probability of seeing the shifted treatment as well.
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Identification

Theorem (abridged)

Let m; 1 = Y. Recursively define for t = 1,...,1 the parameters

mg . (at7 ht) — E [mt+1(A§I+17 Ht+1) ‘ At = at, Hy = ht,AtH < §t+1 .

The GATT parameter is identified as
o = E [ml(Af,Ll) | AcBl.

The identification result is conveniently in the form of sequential
regressions,
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Semi-parametric properties

» We analyze the von-Mises expansion of the GATT parameter:

for any P, F in the non-parametric statistical model,
0(P) — 0(F) = —Er{D(Z; P)} + R(P,F),

where D is the efficient influence function of the parameter
and is a second-order remainder term.
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Efficient Influence Function

Theorem (Efficient influence function, abridged)
01 is pathwise differentiable and its EIF is given by

a HA 1 €Biiq}
D(Z;P) = arp(As, H) —————=—
(2:P) = Yo ()= EEE S

{mt+1,P(Ag+17 Ht+1) - mt,P(Ata Ht)} ,

where Gt,P(At7 Ht) = P(At+1 S Bt+1|At7 Ht) and Qr p is a
reweighting term.
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What is o;?
» The weighting term «; is given by

ar(Ar, He) = H r(Ar, Hi),

with the density ratio at time t defined as

g5(ae, he)

rt(at,ht) - gt(at ht) ’

Loosely, g¢(at, ht) is the conditional probability of A; = a;
conditional on H; = h; and gtdB(at, h:) is the conditional
probability (density) of the treatment being shifted to a; from
a treatment in the conditioning set.
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Second-order term

» The second-order remainder term of the von-Mises expansion
is given by

R(P,F) =

- Z EP[{O‘t,P(At«, Ht) - (Yt.,F(Atv, Hr)}{mt,P,F(At, Ht) - mt,F(At, Ht)}]
t=1

u Gep(As, H
B Z Ep [“’f«,F(Atv H) {1 - M} {mep r(Ar, He) — mep(Ae, Hy)
) t.F(Ar, He)
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How can we estimate «;?

» The cumulative probability (density) ratios a; have a complex
form, especially for continuous treatments, involving
conditional probabilities (densities) that can be difficult to
estimate.

» Estimation is especially challenging for long longitudinal
structures.

> We instead estimate «; by interpreting them as Riesz
Representers, which we can estimate using a custom loss

function using techniques developed by e.g. Chernozhukov
PMLR 2022.
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Riesz loss function

» Empirical loss function for Generalized ATT:

& = argminEpQ @(A, He)?
acA
HA, € B,}
Ge-1(Ar-1, He-1)

— &e1(At—1, He-1)

bt(At) Ht; d)}7

» We use ensembles of loss minimization algorithms to solve the
above minimization problem.

» A Super Learner based approach is available in our R package
SuperRiesz: github.com/herbps10/SuperRiesz.
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github.com/herbps10/SuperRiesz

Estimation

» Now that we have a robust way of estimating a;: (a key
ingredient to the EIF), we construct an estimator using TMLE
(see preprint for details)

> Estimator available as part of the 1lmtp package:
github.com/nt-williams/lmtp/tree/riesz
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github.com/nt-williams/lmtp/tree/riesz

TMLE Robustness

Theorem (abridged)
Assume that, for each j € {1,...,J},

T

3 aes — acllle; — mel|l = op(n~?).
t=1

and

/e — mel| = op(n™1/?).

> -a
t=1
Assume there exists some ¢ < oo such that P(ay < ¢) =1 and
P(Cl)\ét(At, Ht) < C) =1. Then
V(Oemie = 0) ~ N(0,0?),

__ where 0® = Varp,(D(Z; Py)).
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Simulation results

95% Coverage MAE x 100 sd(é&r)

N 7 Riesz Plug-in Riesz Plug-in Riesz Plug-in
1000 2 915% 935% 3.21 326 141 1.57
4 945% 95.0% 4.10 494 2725 3.12

6 885% 95.0% 5.46 9.13 2.20 5.78

8 925% 935% 5.40 16.35 2.49 10.32

10 88.5% 87.0% 6.25 27.95 252 18.21

12 935% 855% 6.00 40.62 287 28.99

14 96.0% 585% 6.21 3531  3.62 34.89

Table: Simulation results for sample size N = 1000 and increasing
number of time points 7 in the longitudinal data structure.
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Takeaways

> We generalize the average treatment effect on the treated to
longitudinal settings and continuous treatments.

> We demonstrate how empirical Riesz learning can be used to
stabilize estimation for long longitudinal data structures.
> R packages:

> 1lmtp: github.com/nt-williams/lmtp/tree/riesz
» SuperRiesz: github.com/herbps10/SuperRiesz

;
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