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Takeaways

▶ We generalize the average treatment effect on the treated
to longitudinal settings and continuous treatments.

▶ We show how Riesz learning can be used to stabilize
estimation of longitudinal propensity scores.
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Example

▶ Exposure: measurements of human PM2.5 exposure over
time.

▶ Outcome: respiratory function.

▶ Intervention: reduce PM2.5 by 10%.

▶ Causal question: What would be the average respiratory
function under the intervention among participants with high
PM2.5 exposures?
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Average Treatment Effect on the Treated (ATT)

▶ Structural Causal Model:

L = fL(UL),

A = fA(L,UA),

Y = fY (L,A,UY ).

L

A

Y

▶ Causal estimand:

Ψ = E [Y (1)− Y (0) | A = 1] .

▶ Identification assumptions
▶ No unmeasured confounding: UY⊥⊥UA or UY⊥⊥UL.
▶ Positivity: if P(A = 1|X ) > 0, then P(A = 0|X ) > 0.
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Generalizing the ATT

▶ Longitudinal data structures
▶ Now we have L1,A1, L2,A2, . . . , Lτ ,Aτ ,Y

▶ Multi-valued or continuous treatments, modified treatment
policies
▶ Now A can live in any space A

▶ Condition on arbitrary treatment status
▶ Instead of conditioning on A = 1, we condition on A ∈ B ⊂ A
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Longitudinal Notation

Notation
▶ Ht is the history of all variables up to t.

▶ Overlines indicate history : e.g. Āτ is At from t = 1 to τ .

▶ Underlines indicate future: e.g. A1 is At from t = 1 to τ .
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Longitudinal Structural Causal Model

For t ∈ {1, . . . , τ},

Lt = fLt (At−1,Ht−1,UL,t),

At = fAt (Ht ,UA,t),

Y = fY (Aτ ,Hτ ,UY ).

Notation
Ht is the history of all variables up to right before At .
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Longitudinal DAG

L1

A1

L2

A2

Y

Figure: Example of the assumed Longitudinal DAG with 2 time points.
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Natural Value of Treatment

Intervening to set A1 ← a1 induces a counterfactual value for A2,
which is called its natural value of treatment, written A2(a1).

L1

a1

L2(·)

A2(a1)

Y (·)

Figure: Suppose we fix A← a1, where a1 may be a function of L1. This
induces counterfactual values of L2, A2, and Y .
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Modified Treatment Policies

Definition (D́ıaz JASA 2023)

The intervention Ad
t is called a Longitudinal Modified

Treatment Policy (LMTP) if it has a representation

Ad
t = d(At(Ā

d
t−1),Ht(Ā

d
t−1))

for an arbitrary function d .

Notation
▶ Ād

t−1 is the history of the intervention up to time t − 1.

▶ At(Ā
d
t−1) is the natural value of treatment at time t under

intervention history.

▶ Ht(Ā
d
t−1) is counterfactual history under intervention history.
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Modified Treatment Policies

Example (Shift Modified Treatment Policy)

Suppose there exists some ut such that P(At < ut |Ht = ht) = 1
for all t ∈ {1, . . . , τ}. For some fixed δ, define the intervention as

d(at , ht) =

{
at + δ, if at ≤ ut(ht)− δ,

at , if at > ut(ht)− δ.

Shift the natural value of treatment up by δ, as long as we stay
within the support of the data. Otherwise, leave the natural value
of treatment as is.
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Generalized ATT Parameter

▶ We propose a generalized version of the ATT, which we call
Generalized ATTs (GATTs).

▶ The GATT parameter is defined as:

θ∗ = E
[
Y (Ād) | Ā(d) ∈ B̄

]
.

▶ The vector Ā(d) = (A1,A2(d1), ...,Aτ (dτ−1)) is called the
longitudinal natural value of treatment.

▶ The longitudinal conditioning set B̄ is an arbitrary subset of
the longitudinal treatment space.
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Generalizing the ATT

▶ The GATT parameter is defined as:

θ∗ = E
[
Y (Ād) | Ā(d) ∈ B̄

]
.

▶ Note that we condition on the longitudinal natural value of
treatment Ā(d) ∈ B̄, rather than the observed exposures
Ā ∈ B̄:

θbad = E
[
Y (Ād) | Ā ∈ B̄

]
.

▶ Intuition: conditioning on Ā would be conditioning on
mediators.
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Longitudinal DAG

L1

A1

L2

A2

Y

Figure: Example of the assumed Longitudinal DAG with 2 time points.
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Example

▶ Exposure: Let At denote the particulate matter PM2.5 that
an individual is exposed to at time t.

▶ Outcome: Let Y be a measure of respiratory function.

▶ Intervention: reduce PM2.5 by 10%.

▶ Modified Treatment Policy:

d(at , ht) = 0.9× at .

▶ Conditioning set: exposure over the EPA standard at time 1:

B̄ = {A : A > 9}.

▶ Generalized ATT:

θ∗ = E[Y (Ād) | Ā(d) ∈ B̄].
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Identification Assumptions

Notation
Underlines indicate the future of a variable, e.g. UA,t+1 are all
UA,t from t + 1 to τ .

▶ Strong sequential randomization: For all t ∈ {1, . . . , τ},

UA,t⊥⊥(UL,t+1,UA,t+1)|Ht .

▶ Positivity: For all t ∈ {1, . . . , τ}, if

(at , ht) ∈ Support{At ,Ht | At ∈ Bt}

then

(d(at , ht), ht) ∈ Support{At ,Ht}.

If there is positive probability of At = at , there has to also be
positive probability of seeing the shifted treatment as well.
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Identification

Theorem (abridged)

Let mτ+1 = Y . Recursively define for t = τ, . . . , 1 the parameters

mt : (at , ht) 7→ E
[
mt+1(A

d
t+1,Ht+1) | At = at ,Ht = ht ,At+1 ∈ Bt+1

]
.

The GATT parameter is identified as

θ∗ = E
[
m1(A

d
1 , L1) | Ā ∈ B̄

]
.

The identification result is conveniently in the form of sequential
regressions,
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Semi-parametric properties

▶ We analyze the von-Mises expansion of the GATT parameter:
for any P, F in the non-parametric statistical model,

θ(P)− θ(F) = −EF{D(Z ; P)}+ R(P,F),

where D is the efficient influence function of the parameter
and is a second-order remainder term.
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Efficient Influence Function

Theorem (Efficient influence function, abridged)
θ1 is pathwise differentiable and its EIF is given by

D(Z ;P) =
τ∑

t=0

αt,P(At ,Ht)
1{At+1 ∈ Bt+1}
Gt,P(At ,Ht){

mt+1,P(A
d
t+1,Ht+1)−mt,P(At ,Ht)

}
,

where Gt,P(At ,Ht) = P(At+1 ∈ Bt+1|At ,Ht) and αt,P is a
reweighting term.
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What is αt?

▶ The weighting term αt is given by

αt(At ,Ht) =
t∏

k=1

rk(Ak ,Hk),

with the density ratio at time t defined as

rt(at , ht) =
gd
t,B(at , ht)

gt(at , ht)
,

Loosely, gt(at , ht) is the conditional probability of At = at
conditional on Ht = ht and gd

t,B(at , ht) is the conditional
probability (density) of the treatment being shifted to at from
a treatment in the conditioning set.

21 / 28



Second-order term

▶ The second-order remainder term of the von-Mises expansion
is given by

R(P,F) =

−
τ∑

t=1

EP[{αt,P(At ,Ht)− αt,F(At ,Ht)}{mt,P,F(At ,Ht)−mt,F(At ,Ht)}]

−
τ∑

t=1

EP

[
αt,F(At ,Ht)

{
1− Gt,P(At ,Ht)

Gt,F(At ,Ht)

}
{mt,P,F(At ,Ht)−mt,F(At ,Ht)}

]
.
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How can we estimate αt?

▶ The cumulative probability (density) ratios αt have a complex
form, especially for continuous treatments, involving
conditional probabilities (densities) that can be difficult to
estimate.

▶ Estimation is especially challenging for long longitudinal
structures.

▶ We instead estimate αt by interpreting them as Riesz
Representers, which we can estimate using a custom loss
function using techniques developed by e.g. Chernozhukov
PMLR 2022.
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Riesz loss function

▶ Empirical loss function for Generalized ATT:

α̂t = argmin
α̃∈A

En

{
α̃(At ,Ht)

2

− α̂t−1(At−1,Ht−1)
1{At ∈ Bt}

Ĝt−1(At−1,Ht−1)
bt(At ,Ht ; α̃)

}
,

▶ We use ensembles of loss minimization algorithms to solve the
above minimization problem.

▶ A Super Learner based approach is available in our R package
SuperRiesz: github.com/herbps10/SuperRiesz.
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Estimation

▶ Now that we have a robust way of estimating αt (a key
ingredient to the EIF), we construct an estimator using TMLE
(see preprint for details)

▶ Estimator available as part of the lmtp package:
github.com/nt-williams/lmtp/tree/riesz
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TMLE Robustness

Theorem (abridged)

Assume that, for each j ∈ {1, . . . , J},

τ∑
t=1

∥α̂t,j − αt∥∥m̃t,j −mt∥ = oP(n
−1/2).

and

τ∑
t=1

∥∥∥Ĝt,j − Gt

∥∥∥ ∥m̃t,j −mt∥ = oP(n
−1/2).

Assume there exists some c <∞ such that P(αt < c) = 1 and
P(α̂t(At ,Ht) < c) = 1. Then

√
n(θ̂tmle − θ)⇝ N(0, σ2),

where σ2 = VarP0(D(Z ; P0)).
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Simulation results

95% Coverage MAE × 100 sd(α̂τ )
N τ Riesz Plug-in Riesz Plug-in Riesz Plug-in

1000 2 91.5% 93.5% 3.21 3.26 1.41 1.57
4 94.5% 95.0% 4.10 4.94 2.25 3.12
6 88.5% 95.0% 5.46 9.13 2.20 5.78
8 92.5% 93.5% 5.40 16.35 2.49 10.32

10 88.5% 87.0% 6.25 27.95 2.52 18.21
12 93.5% 85.5% 6.00 40.62 2.87 28.99
14 96.0% 58.5% 6.21 35.31 3.62 34.89

Table: Simulation results for sample size N = 1000 and increasing
number of time points τ in the longitudinal data structure.
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Takeaways

▶ We generalize the average treatment effect on the treated to
longitudinal settings and continuous treatments.

▶ We demonstrate how empirical Riesz learning can be used to
stabilize estimation for long longitudinal data structures.

▶ R packages:
▶ lmtp: github.com/nt-williams/lmtp/tree/riesz
▶ SuperRiesz: github.com/herbps10/SuperRiesz
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