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My background
• Framing: science as a social process (Kuhn, 1962)

• Statistical cultures (Breiman, 2001) and causal inference
cultures (Bonvini et al., 2021).

• PhD at UMass Amherst with Leontine Alkema – Bayesian
modeling

• Doctoral and postdoc work with Antoine Chambaz (Université
Paris Cité) – mathematical statistics, causal inference,
non-parametric theory

• Current postdoc work with Iván D́ıaz (NYU Grossman School
of Medicine)
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Takeaways

• Targeted Maximum Likelihood Estimation (TMLE):
frequentist method for estimating smooth finite-dimensional
parameters in non-parametric models (van der Laan and Rose, 2011)

• Bayesian TMLE: (pseudo) Bayesian analogue of TMLE.
(D́ıaz Muñoz et al., 2011).

• This talk: Bayesian TMLE + hierarchical modeling for
estimating group-specific treatment effects.
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Average Treatment Effect

• Suppose we observe n i.i.d. draws O1, . . . ,On of a variable
O = (X ,A,Y ) ∼ P0.

• X : vector of covariates.
• A: binary treatment indicator.
• Y : binary outcome.

• We assume that P0 falls in the non-parametric model M.

• For any P ∈ M, define the Average Treatment Effect
functional as

ψ(P) = EP [EP [Y |A = 1,X ]− EP [Y |A = 0,X ]].

• Notation:
• Marginal law of X : QP(X ) = dP(X ).
• Propensity score: gP(A,X ) = P(A|X ).
• Outcome model: µP(A,X ) = EP [Y |A,X ].
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Target parameter

M

[0, 1]
P

ψ(P)

ψ

(Warning: infinite dimensional space visualized in two dimensions!)
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A crude taxonomy

non-parametric

parametric

Bayesian frequentist

Targeted Learning

Double machine learning

One-step estimation

Estimating equations

Augmented IPW

Bayesian non-parametrics:

BART

Gaussian processes

Dirichlet processes

Bayesian Bootstrap

Parametric g-computationParametric Bayesian g-computation

“Bayesians have been rather left out

of the excitement surrounding double-

robust estimation.” (Gustafson, 2012)

“We had not anticipated BART’s

impressive performance” (Gruber and

van der Laan, 2019)

Bayesian TMLE
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Frequentist estimation of the ATE
• Any regular estimator ψ̂n of ψ(P0) satisfies

ψ̂n = ψ(P0) +
1

n

n∑
i=1

IF(P0)(Oi ) + op(n
−1/2),

where IF(P0) : O → R is called an influence function of ψ at
P0.

• The influence function with the smallest variance is called the
efficient influence function (EIF).

• The non-parametric efficiency bound for estimating ψ(P0) is
given by the variance of the efficient influence function:
VarP0(EIF(P0)(O)).

• A typical goal for frequentists is to propose an estimator that
achieves the above efficiency bound.

• Classical references for semi-parametric efficiency theory: Bickel et al. (1993); van der Vaart and Wellner

(1996). Excellent and accessible review: Kennedy (2023)
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Efficient influence function of the ATE

• Efficient influence function for the ATE, EIF(P):

O 7→ 2A− 1

gP(A,X )
(Y − µP(A,X )) + µP(1,X )− µP(0,X )− ψ(P).

• The non-parametric efficiency bound for estimating ψ(P0):

EP0

[
VarP0(Y |A,X )

gP0(A,X )2
+ (µP0(1,X )− µP0(0,X ))2

]
.
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Plug-in estimation

• Suppose we have an initial estimate P◦
n = {µ◦n,Q◦

n} of the
parts of P0 relevant to ψ.

• Covariate distribution Q◦
n : empirical distribution.

• Outcome model µ◦
n: logistic regression, machine learning

algorithms, ...

• Form a plug-in estimator of ψ:

ψ̂plug−in = ψ(P◦
n)

=
1

n

n∑
i=1

µ◦n(1,Xi )− µ◦n(0,Xi ).
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Plug-in estimation

M

P0

ψ(P0)

P◦
n

ψ(P◦
n)
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Analysis of plug-in estimator

• Apply expansion of the ATE (von Mises, 1947):

ψ(P◦
n) = ψ(P0) +

1

n

n∑
i=1

IF(P◦
n)(Oi ) + R(P◦

n ,P0).

• Problems with plug-in estimator:
• First-order bias term 1

n

∑n
i=1 IF(P

◦
n )(Oi ) not necessarily zero.

• Second-order remainder term R(P◦
n ,P0) doesn’t necessarily

converge to zero, or does so too slowly.
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Targeted Learning

• Many different ways to form unbiased and asymptotically
efficient estimators of parameters like the ATE

• e.g. double machine learning, one-step estimation, estimating
equations, augmented IPW

• Frequentist analysis typically proceeds by showing how they
make the first-order bias term disappear, and under which
conditions the second-order remainder term is op(n

−1/2).

• We focus on Targeted Maximum Likelihood Estimation
(TMLE) (van der Laan and Rubin, 2006; van der Laan and Rose, 2011).

12 / 31



Targeted Maximum Likelihood Estimation

• Key idea: carefully fluctuate the initial estimate P◦
n in order

that the first-order bias term becomes zero.

• More specifically, plug-in estimator of the form

ψ̂TMLE = ψ(P◦
n,ϵ∗n

)

with {P◦
n,ϵ : ϵ ∈ R} ⊂ M a well-chosen fluctuation of P◦

n , and
ϵ∗n chosen by maximum-likelihood with respect to a carefully
chosen likelihood L.
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Targeted Maximum Likelihood Estimation

M

P0

ψ(P0)

P◦
n,ϵ

P◦
n

ψ(P◦
n,ϵ)

ψ(P◦
n)
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TMLE: details for the ATE

• Fluctuation submodel:

logit
{
µ◦n,ϵ(A,X )

}
= logit

{
µ◦n(A,X ) +

2A− 1

gP(A,X )
ϵ

}
,

Q◦
n,ϵ(X ) ∝ Q◦

n(X ) exp {µ◦n(1,X )− µ◦n(0,X )− ψ(P◦
n)} .

• Log-likelihood:

L(O|ϵ) =Y log(µ◦n,ϵ(A,X ))

+ (1− Y ) log(1− µ◦n,ϵ(A,X )) + logQ◦
n,ϵ(X ).
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TMLE: details for the ATE

• Key property of log-likelihood and fluctuation submodel:

EIF(P) ∈ span

{
d

dϵ
L(·|ϵ)

∣∣∣∣
ϵ=0

}
• Estimate ϵ∗n be maximizing ϵ 7→ L(O1, . . . ,On|ϵ).
• Form a new plug-in estimator as

ψ̂TMLE = ψ(P◦
n,ϵ∗n

)

• It can then be shown that

1

n

n∑
i=1

EIF(P◦
n,ϵ∗n

)(Oi ) ≈ 0,

i.e. the bias term of the expansion is zero.
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Frequentist properties of TMLE

• Double-robust consistency: remarkably, ψ̂TMLE is consistent
as long as either µ◦n or g◦

n consistently estimate µP0 or gP0 .
• Asymptotically normal and efficient so long as

• Nuisance estimation rates:
∥µ◦

n − µP0∥ × ∥g◦
n − gP0∥ = op(n

−1/2).
• Nuisance estimators are not too complex (e.g. fall in Donsker

class). Note such assumptions can be obviated through the
use of cross-fitting (Zheng and van der Laan, 2011).
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Bayesian TMLE
• Idea: in Bayesian TMLE, apply Bayesian inference to derive a
(pseudo) posterior distribution for ϵ:

π(ϵ|O1, . . . ,On,P
◦
n) ∝

n∏
i=1

L(Oi |ϵ)π(ϵ),

where π(ϵ) is a prior on ϵ.

• A posterior distribution for ψ can then be formed via the
mapping ψ(P◦

n,ϵ).

• Bernstein von-Mises type results suggest posterior converges
to normal distribution centered on efficient estimator with
variance given by the non-parametric efficiency bound, and is
double robust.

• Bayesian TMLE has been developed for a few parameters:
ATE, class proportions in unlabeled data, parameter of
marginal structural models (D́ıaz Muñoz et al., 2011; D́ıaz et al., 2020; Susmann and

Chambaz, 2023).
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Bayesian TMLE

M

P0

ψ(P0)

π(ϵ)

P◦
n

π(ψ(P0)|O1, . . . ,On,P
◦
n)

ψ(P◦
n)
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Bayesian TMLE in Stan
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Group Treatment Effects

• Suppose that instead of estimating a single Average
Treatment Effect, we would like to estimate a set of
group-specific treatment effects.

• Data structure is now O = (X ,A,D,Y ), where
• X : vector of covariates.
• D ∈ {1, . . . ,G}: indicator of group membership.
• A: binary treatment indicator.
• Y : binary outcome.

• For g ∈ {1, . . . ,G}, define group-specific treatment effect as

ψg (P) = EP [EP [Y |A = 1,D,X ]− EP [Y |A = 0,D,X ]|D = g ].

• Note that the functional ψg has a causal interpretation under
similar “standard causal assumptions” as the ATE.
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Partial pooling

• How should we estimate ψg (P0), especially in instances where
there are many groups (G is large) or there are groups with
few observations?

• For Bayesians, natural to think about partial pooling of
group-specific treatment effects (Feller and Gelman, 2015).

• Place a hierarchical model on ψg (P0), for example:

ψg (P0) ∼ N(m, σ2),

with appropriate hyperpriors on m, σ.
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Hierarchical models for Bayesian TMLE

• Bayesian TMLE for group-specific treatment effects: set up
fluctuation model separately for each group, with fluctuation
parameters ϵg , g = 1, . . . ,G .

• Each ϵg maps to a group-specific treatment effect via
ψg (P

◦
n,ϵg ).

• Place a hierarchical model on the group-specific treatment
effects in order to share information between groups:

ψg (P
◦
n,ϵg ) ∼ N(m, σ2).
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Illustrative simulation study

• Data generating process:
• For each group g = 1, . . . ,G , draw a group-specific effect
λg ∼ Uniform(−0.5, 0.5).

• Observations are drawn from

W ∼ N5(05, I5),

D|W ∼ Categorical({1, . . . ,G}, {1, 2, 1, . . . , }),
A|D,W ∼ Bernoulli(logit−1(0.25 + 0.25W (1) + 0.25W (2))),

Y |W ,D,A ∼ Bernoulli(logit−1(−0.25 + 0.5W (1) + 0.25W (2) + A+ λD)).

• Form simulation datasets by drawing N = 2500, 5000, 10000
observations 100 times from the above data generating
process, with G = 20 groups.
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Illustrative simulation study

• Estimate propensity score and outcome models using
ensemble estimators.

• SuperLearner with candidate algorithms SL.mean, SL.knn,
SL.glm, SL.glm.interaction, SL.glmnet.

• Compare against frequentist TMLE run separately for each
group.

• Code available on GitHub:
github.com/herbps10/bayes_tmle.
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Simulation example
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Simulation results: mean error
N Frequentist TMLE Bayes hierarchical TMLE

Both consistent

2500 -0.008 -0.011
5000 -0.003 -0.005

10000 -0.002 -0.003
Propensity consistent, outcome inconsistent

2500 -0.025 -0.033
5000 -0.018 -0.025

10000 -0.013 -0.017
Propensity inconsistent, outcome consistent

2500 -0.013 -0.013
5000 -0.007 -0.008

10000 -0.002 -0.002
Both inconsistent

2500 -0.041 -0.041
5000 -0.040 -0.041

10000 -0.038 -0.038
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Simulation results: mean absolute error
N Frequentist TMLE Bayes hierarchical TMLE

Both consistent

2500 0.073 0.047
5000 0.052 0.040

10000 0.037 0.030
Propensity consistent, outcome inconsistent

2500 0.075 0.053
5000 0.054 0.043

10000 0.038 0.033
Propensity inconsistent, outcome consistent

2500 0.072 0.046
5000 0.052 0.040

10000 0.036 0.031
Both inconsistent

2500 0.080 0.056
5000 0.063 0.051

10000 0.048 0.044
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Simulation results: empirical coverage
N Frequentist TMLE Bayes hierarchical TMLE

Both consistent

2500 92.37% 93.25%
5000 94.12% 92.32%

10000 93.81% 95.38%
Propensity consistent, outcome inconsistent

2500 92.63% 90.88%
5000 93.97% 90.41%

10000 94.90% 93.85%
Propensity inconsistent, outcome consistent

2500 93.45% 93.09%
5000 93.85% 91.77%

10000 95.00% 93.25%
Both inconsistent

2500 91.70% 87.47%
5000 89.36% 82.45%

10000 83.57% 81.79%
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Bayesian TMLE: Best (or worst) of both worlds?

Pros

• Good asymptotic frequentist properties.

• In practice, prior only needs to be placed on the parameter of
interest (the group-specific treatment effects).

• Nuisance parameters can be estimated using any method,
including flexible data-adaptive algorithms.

• Simulations suggest hierarchical modeling improves
finite-sample performance for group-specific treatment effects.

Cons

• Not strictly Bayesian; interpretation of posterior not clear in
finite samples.

• May be example of “frequentist pursuit” (Robins et al., 2015).
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Discussion

• Bayesian TMLE: (pseudo) Bayesian method with applications
in causal inference.

• To Bayesians, our proposal should be pretty obvious: use
hierarchical modeling!

• Moral: bringing together ideas from separate “statistical
cultures” combines advantages (and disadvantages) of both.

• Exciting recent work combining Bayesian inference with
concepts from non-parametric efficiency theory (Ray and Szabo, 2019;

Ray and van der Vaart, 2020; Yiu et al., 2023; Breunig et al., 2024).

31 / 31



Bibliography I

Bickel, P. J., Klaassen, C. A., Ritov, Y., Klaassen, J., and Wellner, J. A. (1993).
Efficient and adaptive estimation for semiparametric models, volume 4. Springer.

Bonvini, M., Mishler, A., and Kennedy, E. H. (2021). Comment on ”statistical
modeling: The two cultures” by leo breiman.

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author). Statistical Science, 16(3):199 – 231.

Breunig, C., Liu, R., and Yu, Z. (2024). Double robust Bayesian inference on average
treatment effects.
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Appendix: Causal inference for the average treatment
effect

• Separate task into two components: (1) definition and (2)
estimation of causal effects (D́ıaz, 2019).

• Observe n i.i.d. draws O1, . . . ,On of a variable
O = (X ,A,Y ) ∼ P0

• X : vector of covariates
• A: binary treatment indicator
• Y : binary outcome

• Let Y (0) and Y (1) be the potential outcomes under
treatment assignment A = 0 and A = 1, respectively (Rubin, 1974).

• Define Average Treatment Effect (ATE):

Ψ = E [Y (1)− Y (0)]
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Appendix: Identification

• Assume “Standard causal assumptions”:
• Consistency: Y = Y (A),
• Ignorability: Y (0),Y (1)⊥⊥A|X ,
• Positivity (overlap): 0 < P(A = 1|X ) < 1 for all X .

• g-computation identification result: (Robins, 1986):

ψ(P) = EP [EP [Y |A = 1,X ]− EP [Y | A = 0,X ]] .

• We are now firmly in the realm of statistics. How shall we go
about estimating ψ(P)?

36 / 31



Appendix: Bayesian non-parametrics

M

P0

ψ(P0)

P(ψ(P0)|O1, . . . ,On)
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